11

orking with Serviet
Programming

Introducing Serviet 2.5 318

Exploring Serviet AP! 326

Cénﬁgun’ng Serviet in web.xml 333

Creating a Sample Serviet 335

Describing Request Delegaticn and Request Scope 339

Underslanding Session Tracking 364

Working with Login Application using Session Tracking 381

Chapter 11

The Java Servlet technology provides a simple, vendor-independent mechanism to extend the functionality of a
Web server. This technology provides high level, component-based, platform-independent, and server-
independent standards to develop Web applications in Java. The Java Servlet technology is similar to other
scripting languages, such as Common Gateway Interface (CGI) scripts, JavaScript (on the client-side), and
Hypertext Preprocessor (PHP). However, servlets are more acceptable since they overcome: the limitations of
CGI, such as low performance and scalability.

A serviet is a simple Java class, which is dynamically loaded on a Web server and thereby enhances the
functionality of the Web server. Servlets are secure and portable as they run on Java Virtual Machine (JVM)
embedded with the Web server and cannot operate outside the domain of the Web server. In other words,
servlets are objects that generate dynamic content after processing requests that originate from a Web browser.
They are Java components that are used to create dynamic Web applications, Servlets can run on any Java-
enabled platform and are usually designed to process HyperText Transfer Protocol (HTTP) requests, such as
GET, and POST,

In this chapter, you learn about the Java Serviet API, version 2.5, which can be downloaded from the
http://java.sun.com/products/serviet/index.jsp Uniform Resource Locator (URL). This API
includes two packages, javax.servlet and javax.servlet.http, which provide interfaces and classes
to write servlets.

The chapter first introduces the new features introduced in Servlet 2.5 followed by a discussion about general
features of a Java Servlet. Next, the chapter explains the classes and packages of the Servlet Application
Programming Interface (APT) used to develop Web applications, You also learn about the life cycle of a servlet
and configuring a servlet in the web.xml file. In addition, you learn to create a sample servlet by mapping it in
the web.xml file. Moreover, the chapter also provides a walkthrough to the noteworthy interfaces of the
javax.servlet and javax.servlet_http packages. Toward the end of the chapter, you learn about
request delegation, request scope and servlet collaboration. The chapter also explains the concept of session
tracking. You also learn about how to implement the concept by creating a sample Web application using session
tracking.

Just as Serviet 2.2 introduced the concept of selfcontained Web applications, Servlet 2.3 introduced filters, and
Servlet 24 provided deprecated classes and methods, Servlet 2.5 too includes several new features and
enhancements over the previous version, You learn about them later in the chapter.

Let’s begin the chapter by first discussing Servlet 2.5.

Introducing Serviet 2.5

Servlet 2.5 introduced several new advancements, such as changes in the web.xml file and in filter mapping. We
assume that you are familiar with the classes and methods of the previous versions of Java Servlet. The
following features and enhancements have been included in Servlet 2.5:

O Provides support for the new language features of J2SE 5.0, such as generics, the new enum type, and
autoboxing. Note that the minimum platform requirement for the Servlet 2.5 specification is JDK 1.5 {J2SE
5.0). This implies that Servlet 2.5 cannot be used in versions below JDK 1.5.

2 Introduces changes in the web.xml file that have allowed Java developers to easily cenfigure the resources
of an application. In addition, in Servlet 2.5, you can bind all servlets to a filter simultaneously, which was
not possibie in the earlier versions. Now, it is possible to use an asterisk {*) within the <filter-mapping>
element as the value of the <serviet-name> element to represent all servlets. Moreover, you can provide
multiple matching criteria in the same entry while writing the <servlet-mapping> or <filter-mapping>
elements in Servlet 2.5. Earlier, the <servlet-mapping> element supported a single <url-pattern> element;
however, now in Servlet 2.5, the <servlet-mapping> element supports more than one url pattern.

QO Removes two major restrictions in error-handling and session tracking. Earlier, there was a rule that the
resource configured in the <error-page> element could not call the setStatus{} method to alter the code
provided to display an error message. However, the Servlet 2.5 specification no longer prevents the error-
handling page to produce a non-error response. Therefore, the error-handling page can do far more than

318

Working with Serviet Programming

just show an error. Moreover, in the case of session tracking, Servlet 2.5 does not allow you to set response
headers for a servlet called by the RequestDispatcher’s include() method.

Q Clarifies certain options available in the Servlet 2.4 specification. These clarifications are as follows:

* According to the Serviet 2.4 specification, before calling the request.getReader() method, you need to
call the request.setCharacterEncoding() method. However, the specification does not clarify why this
needs to be done. The Servlet 2.5 specification describes this properly and states that if you ignore this
specification option, the request.getReader() method is not executed.

» The Servlet 2.4 specification does not define what happens if a session id is not specified. However,
the Servlet 2.5 specification states that the HttpServlietRequest interface will return false if the
session id is not specified.

» The Servlet 2.4 specification states that a response should be committed in most situations. The
following code snippet shows a situation where the amount of content specified in the
setContentLength() method of the response is not greater than zero and has been returned to the
response:

- res, SetHeader("Host™,; " Tocalhest”) ;-
e, setﬂhade#{"wm fno+cache’ =
= i ¥

| FesxsetHaader (“Con i’ !
fes&tﬂmr("tmtTQH".”m ogentindia.com™

In the preceding code snippet, a servlet technically lgnores the Locatlon header because the response
must be committed immediately, as the zero byte content length is satisfied. However, the Servlet 2.5
specification states that the response should be committed when the amount of content specified in the
setContentLength() method of the response is greater than zero, and is returned to the response.

* The Servlet 2.5 specification changes the rules of cross context session management. This feature is
used when Servlets dispatch requests from one context to another. The Serviet 2.5 specification states
that resources present in a context can refer to the session of that context, irrespective of the origin of a
request.

After discussing the new features and enhancements introduced in Servlet 2.5, let’s now explore the features of
Java Servlets.

Exploring the Features of Java Servlets

Java Servlet provides various key features, such as security, performance, as well as the request and response
model. Servlets are considered as a request and response model in which requests are sent by users and their
appropriate responses are generated by a Web server, In addition, a key feature of a servlet is that you can create
multiple instances of a servlet with different data and each servlet can be configured with different names. A
Java Servlet also provides support for the security policy used to control accessibility permissions, such as a user
accessing a resource. In addition, scripting languages can be used in servlets to dynamically modify or generate
Hypertext Markup Language (HTML) pages. Apart from this, servlets also support various HTTP methods, such
as GET and POST, which are used to redirect requests and responses.

Now, let’s iearn about these features in detail.

Serviet — A Request and Response Mode/
Servlets are based on the programming model that accepts requests and generates responses accordingly. A
developer extends the GenericServlet or HttpServlet class to create a serviet. The service () method in a servlet
is defined to handle requests and responses. The following code snippet defines the service() method for the
MyServietApplication serviet class:

import: javax.serviet.*;. R

pulﬂ fe ctass: ny‘serv‘teuppﬁcaﬂon ea(tends GeﬁéﬁCServ‘let £ kg R

 pubkic void seevice: {wviqnw: «rmuest; RW?GWWS‘% esponse):
?hm Serv1et'n‘xcepmon. ;! Except : e

319

Chapter 11

The service () method is prov1ded with request and response parameters. These parameters encapsulate the
data sent by a client, which provides access to the parameters and allows setvlets to generate responses. Servlets
normally use an input stream to retrieve most of their parameters, and an output stream is used to send
responses. The following code snippet shows how the request parameter is used to invoke the
getInputStream() method:

PRped s

4 ServietInputStream - AnpUt s requestigetmputstraan();
s smwﬁm’tﬁmmﬁ . L FRSPONSE [GRLOUPUTS L redn(]

In the preceding code snippet, instances of the input and output streams are created, which may be used to read
or write data.

Serviet and Environment State

Servlets are similar to any other Java objects and have instance-specific data. This implies that servlets are also
independent applications that run within the server environment and do not require any additional classes
{which are required by some alternative server extension APls).

When servlets are initialized, they have access to some servlet-specific configuration data, This enables the
initialization of different instances of the same servlet-class with different data, and their management as
differently named servlets. The data, provided with each servlet instance at the time of its initialization, also
includes some information about the persistent state of an instance. The ServletContext object provides the
ability to servlets to interact with other servlets in a Web application.

Next, let’s discuss the different modes in which a servlet can be used.

Usage Modes

Servlets can be used in various modes. However, these modes are not supported by all server environments. At
the core of a request-response protocol, the basic modes in which servlets can be used are as follows:

O Servlets can be chained together into filter chains by the servers
O Servlets can support protocols, such as HTTP

O Servlets serve as a complete, efficient, and portable replacement for CGI-based extensions in HTTP-based
applications

O Servlets can be used with HTML to dynarnically generate some parts of a Web document in HTTP-based
applications

Now, let's discuss the life cycle of a servlet.

Servlet Life Cycle

When a server loads a servlet, the init () method of the servlet is executed. The servlet initialization process is
completed before any client request is addressed or before the servlet is destroyed. The server calls the init()
mmethod once, when the server loads the servlet, and does not call the method again unless the server reloads the
servlet. A server cannot reload a servlet after the servlet is destroyed. After initialization, the servlet handles
client requests and generates responses, Finally, the destroy() method is invoked, to destroy the servlet.

Let’s discuss various possible sources from where a servlet is loaded. Moreover, you also explore different
situations in which a servlet is loaded.

Possible Sources of Serviets

When a client requests for a servlet, the server maps the request of the client and loads the servlet. The server
administrator can specify the mapping of client requests to servlets in the following ways:

O Mapping client requests to a particular serviet, for example, client requests made to a specific database.

0 Mapping client requests to the servlets found in an administered servlets directory. This servlet directory
may be shared among different servers that share the processing load for the clients of a website.

320

Working with Servlet Programming

(=]

Configuring some servers to automatically invoke servlets that filter the output of other servlets. For
example, a particular type of output generated by a servlet may invoke other servlets to carry out post
processing, probably to perform format conversions.

Invoking the specific servlets without administrative intervention by properly authorized clients.

Figure 11.1 displays the various sources of servlets:

|
|
|
|

e
-

|

|

g

! !

i

i

i

A

z
£
H
3
o
:

Java Server

[T

i Remote Server

Push -

N

| Teysted Client

s osm s o e

Lo
| i Servietl i

L

1 :
Hit:tfz;’J‘ [o 5

j " Trusted Gient

{Individually admmlstered
jocation)

Figure 11.1: Displaying the Possible Sources of Loading a Serviet

Figure 11.1 shows the various possible sources of servlets, which can be as follows:

Q Individually administered locations
Q Directory of servlets that are shared between servers
O Authorized clients
O After having a brief understanding about life cycle of a servlet and exploring its possible sources, let's
describe the primary methods of a servlet, which are init(), service(), and destroy{}.
Primary Servlet Methods

The following are the methods used in the life cycle of a loaded servlet:

Q

init {)—Refers to the method that an application server uses to load and initialize a servlet. The init ()
method is typically used to create or load objects that will be used by the servlet to handle client requests.
The application server calls the init () method to provide a new servlet with the information related to its
context.

service () -Helps servlets to handle client requests. Servlets handle many requests after initialization. One
service () method call is generated by each client request. These requests may be concurrent. This enables
servlets to coordinate activities among multiple clients. To share data between requests, the class-static state
may be used.

destroy ()-Terminates an executing servlet. Serviets process client requests until they are explicitly
terminated by the Web server by calling the destroy () method. When a servlet is destroyed, it becomes
eligible for garbage collection.

Security Features
Servlets have access to information about their clients. Peer identities can be determined reliably when servlets
are used with secure protocols, such as Secure Sockets Layer (SSL). Servlets that rely on HTTP also have access

to HTTP-specific authentication data.

321

Chapter 11

Servlets have various advantages of Java. For example, as in Java, memory access violations and strong typing
viclations are also not possible with servlets. Due to these advantages, faulty servlets do not crash servers, which
is commeon in most C language server extension environments.

Java Servlet provides strong security policy support unlike any other current server extension APl This is
because a security managet, provided by all Java environments, can be used to control the permissions for
actions such as accessing a network or file. Servlets are not considered trustworthy in general and are not
allowed to carry out the actions by default. However, serviets that are either built into the server, or digitally
signed servlets that are put into Java ARchive (JAR} files are considered trustworthy and granted permissions by
the security manager. A digital signature on any executable code ensures that the organization that created and
signed the code takes the guarantee of its trustworthiness. Such digital signatures cannot support answerability
for the code by themselves. However, they do provide assurance about the use of that code. For example, all
code that accesses network services within a corporate Intranet of the Management Information System (MIS)
organization may require having a particular signature, to access those network services. The sighature on the
code ensures that the code does not violate any security policy. Figure 11.2 displays the approaches to server
extensions depicting the Java server security manager layer used by servlets to verify permissions:

 Na de
Libraries

Iava Server Security Manager

ks
1
1 H
t
!

Figure 11.2: Showing the Activities of Signed and Unsigned Serviets
Figure 11.2 compares two approaches to server extensions:

8 Activities of servlets in the case of signed servlets, which are monitored at fine granularity by the Java
security manager
O Activities of native code extensions in the case of unsigned servlets, which are never monitored

In both cases, the host operating system usually provides very coarse-grained protection. In languages such as C
or scripting languages, extension APIs cannot support fine-grained access controls, even if they do allow digital
signatures for their code. This explains that Pure Java™ extensions are fundamentally more secure than current
competitive solutions including, in particular ActiveX of Microsoft.

There are some immediate cormmercial applications for such improved security technologies. At present, it is not
possible for most Internet Service Providers (ISPs) to accept server extensions from their clients. The reason is
that the ISPs do not have proper methods to protect themselves or their clients from the attacks building on
extensions, which use native C code or CGI facilities. However, it has been observed that extensions built with
pure Java Servlet can prevent modification of data. Along with the use of digitally signed code, ISPs can ensure
that they safely extend their Web servers with the servlets provided by their customers.

HTML-Aware Serviets

It has been observed that many servlets directly generate HTML formatted text, because it is easy to do so with
standard internationalized Java formatted output classes, such as java.io.PrintWriter, To dynamically
modify HTML pages or generate HTML pages, you do not have to use scripting languages. You can also use
other approaches to generate Java HTML formatted text. For exarnple, some multi-language sites that serve
pages in multiple languages, such as English and Japanese, usually maintain language-specific libraries of
localized HTML template files. These sites also display the localized HTML templates by using localized

322

Working with Serviet Programming

message catalogs. Other sites may also have developed HTML generation packages. These packages are
particularly well accustomed to other specific needs for dynamic Web page generation, for example, the ones
that are closely integrated with other application toolsets.

Servlets may also be invoked by Web servers that provide complete servlet support; to help in preprocessing
Web pages by using the server-side include functionality. This kind of preprocessing can be indicated to Web
servers by a special HTML syntax. The following code snippet shows the syntax that is used in HTML files to
indicate preprocessing of Web pages:
<SERVLET NAME=ServietName»
<PARAM NAME=paraml VALUE=vall>
<PARAM -NAME=param? VALUE=val2>
If you see this text, it means that the Web server prowding th1s page
doe].vl aggt support the SERVLET tag, ASK your Intemei: ser\nce Prowder to
< /;E;VLET> '

In the preceding code snippet, the invocation style usage of the SERVLET tag mdlcates that a preconfigured
servlet should be loaded and initialized in cases where it has not already been done, and then invoked with a
specific sel of parameters. The output of that servlet is included directly in the HTML-formatted response. Apart
from using the SERVLET tag, another invocation style can also be used, which allows the passing of the
initialization arguments to the servlet and specifies its CLASS and CODEBASE values directly.

The SERVLET tag could be used to insert formatted data. The formatted data can be the output of a Web or
database search, user-targeted advertising, or the individual views of an online magazine. HTML-aware servlets
can generate arbitrary dynamic Web pages in which typical servlets accept input parameters from different
sources. Some of these sources are as follows:

O The input streamn of a request, perhaps from an applet

0O The Uniform Resource Identifier (UURI) of the request

O Any other servlet or the network service

O Parameters passed from an HTML form

The input parameters are used to generate HTML-formatted responses. A servlet often checks with one or more
databases, or other data with which the servlet is configlired, to decide the exact data that is to be returned with
the response.

HTTP-Specific Serviets

HTTP-specific servlets are those serviets that are used with the HTTP protocol. These servlets can support any
HTTP method, such as GET, POST, and HEAD; redirect requests to other locations; and send HTTP-specific error
messages. They can also have access to the parameters passed through standard HTML forms. HTTP-specific
servlets include the HTTP method to be executed and the Uniform Resource Identifier (URI), which describes the
destination of the request. The following code snippet shows some of the methods used in HTTP-specific
servlets:

. .String method graﬂue
string uri .

string card = request get?aramaxer {"cred1tcafd“}. P L SR
In HTTP-specific servlets, request and response data is always prov1ded in the Multlpurpose Internet Mail
Extensions {MIME) format. This implies that the servlet first specifies the data type and then writes the encoded
data. This allows servlets to refer the data format regarding arbitrary sources of input data, and then return the
data in the appropriate form for the particular request. Examples of request and response data formats are
HTML, graphics formats, such as Joint Photographic Experts Group (JPEG) or Moving Picture
Experts Group (MPEG), and data formats that are used by some applications.

In most applications, HTTP servlets are comsidered better than CGI programs in terms of performance,
flexibility, portability, and security. Therefore, rather than using CGI or a C language plug-in, write your next
server extension by using the Java Servlet APL

323

Chapter 11

Performance Features

Let’s discuss the performance feature of serviets, One of the most prominent performance features of Java
Servlets is that a new process need not be created for every new request received. In most environments, several
servlets run in parallel to the server within the same process. This is a big advantage. When you use serviets in
such environments with HTTP, performance is assumed to be much better than what it would be if the CGI or
Fast-CGI approach was used.

" Figure 11.3 displays the different approaches to depict the functionality and performance of a serviet:

b
(b} @)
Request! Request2 Reguests Java Server
\ \ CGl Based Server !\
\ \l Main Process g \‘_ Single Process

——————————————— S S

Child Process 1 ¥ 3

Call Serviet
Child Process 2
i

Request! Request2 Serviett Serviet2 Servietd
~
\ ~_ Fast- CGl Based Server
Main Process
____________ -
Child Process 1

.............]

Figure 11.3: Showing Diffarent Servlet Functional Approaches

Figure 11.3 compares the following three server extension approaches:

Q The servlet approach, which allows embedding to be supported inside a server, as shown by section (a) of
Figure 11.3

Q The CGI approach, which involves creating a new child process with every new request, as shown by
section (b) of Figure 11.3]

O The Fast-CGI approach, which involves creating one child process for multiple requests, as shown by
section (c) of Figure 11.3

The difference between these approaches is that the servlet approach require only lightweight thread context

switches, whereas Fast-CGI involves heavyweight process context switching on each request, and regular CGI

requires even heavier weight process start-up and initialization code on each request. After a servlet is

initialized, it can address requests from multiple clients in most environments. This spreads the cost of

initialization over many methods. It also enables all client requests made to a service to share data and

communication resources as well as use system caches effectively.

Java Servlet can take the advantage of additional processors, with multiple implementations of JVM. The virtual
machine (JVM) enables you to scale applications from entry-level servers to the mainframe class multiprocessors,
This also helps to provide better throughput and timely response to clients. Pure Java programs are platform-
independent; therefore, they can run on any operating system. In other words, you can select any operating
system that best addresses your requirements for any given application. The implementation of Java Servlet is
beneficial for many large Web-based applications that use Java and other Internet technologies.

324

Working with Servlet Programming

3-Tier Applications
Using Java Servlet helps a user to apt for 3-tier applications. Many organizations require you to use mubti-tier

applications. Many clients and single server models are giving way to a single application, which includes many
servers that exchange data between each other.

The first tier of an application may use any number of Java enabled Web browsers. The browsers can include
those running on Network Computers (NCs) as well as on personal computers or workstations. Complex tasks
related to the user interface are handled in the first tier by Java applets downloaded from second-Her servers.
Simpler tasks can be handled by using standard HTML forms.

The second tier of an application involves servlets, which implement the specific business rules and business
logic of the application. Such rules can include application-specific access controls for sensitive corporate data.

Figure 11.4 displays the 3-tier structure of servlets:

T —

e [-

[| - IGBC ...+ Legacy
! Clien!j S . }»_' e Server
i %}J ’Tj e I
£ Clk -
{ Client) i

'\ T e HO

Server -
()

R ——

Figure 11.4: Showing 3-Tier Structure of Serviets

Figure 11.4 shows how servlets can be used to connect the second tier of an application to the first tier. A variety
of client technologies may be used to connect to other tiers.

The third tier of an application involves data repositories. This tier can be accessed by using relational database
interfaces such as Java Database Connectivity (JDBC), or other interfaces supported by legacy data, for example,
Remote Procedure Call (RPC)-like protocols such as Open Network Computing (ONC) RPC, Distributed
Computing Environment (DCE} RPC, and Common Object Request Broker Architecture (COBRA)/Internet
Inter-Orb Protocol (IIOF). '

Web Publishing System

Many organizations have large collections of data. They have to manage and publish the data, which is usually
flexible and tends to change. For example, an organization may maintain a collection of both histerical and real-
time weather data that needs to be presented in easily understood formats in the form of a response to the
current application. '

In this case, you can use a Web publishing system that provides sites to access historical and real-time weather
data from a database. In other words, the required data can be accessed from the database by using [DBC. The
weather data (including temperature, wind, rainfall, a frame of image data, or a stream of MPEG data) is sent by a
Java equipped remote recording station to a site receiving the data. The servlet processing the data at the
collecting site may selectively store the data. For example, it may store data of a specific time period, such as the
last two weeks, or it may discard some data immediately.

The collecting sites may receive queries from other sites, such as individual,‘lbrowsers or other collecting sites, to
return data in a specific format. In that case, servlets process the saved data and return the response of the query
in the appropriate format, such as a Web page with current data and historical tables and graphs, to a user. Some
servlets can also perform administrative tasks, such as archiving and deleting data, or pulling data from staging
areas, as part of an automated data distribution system, '

Figure 11.5 shows communication between two servlets:

325

Chapter 11

1 Collector Node
r Sensor Node f\f_l:!sh

—
: Browser Node
Pull
AR J
e

et Archiving Formatting (R e
A i regating Node 1

Push | Seret Serviet Pull | E!*ELS ng ;
PR iy = T
Sensor Node I ; - Serviet o
— g R

|
S ij e

Figure 11.5: Showing Servlet Communication

Figure 11.5 shows two kinds of servlets used by a collecting site. One is used by the remote sensor nodes to push
data to the collecting site, and the other is used by clients to puil data from the collecting site in a specific format.
Such clients can include tertiary nodes, which assemble data from multiple collecting sites.

After exploring the features of Java Servlets, let’s have a discussion about the Serviet APL

Exploring the Serviet API

The Servlet APLis a part of the Java Servlet specification designed by the Java Community Process (JCP). This
APl is supported by all servlet containers, such as Tomcat and Webl.ogic. The Servlet AFI contains classes and
interfaces that define a standard contract between a servlet class a Servlet container (or Servlet engine). These
classes and interfaces are available in the following two packages of the Servlet API:

Q javax.servlet
O javax.servlethttp
Q Let’s learn about these packages in detail in the following sections.

The javax.serviet Package

The javax.servlet package contains some interfaces and classes that allow a servlet to access the basic
services provided by a Servlet container. The Servlet container provides the implementation of the classes and
interfaces packaged under the javax.servlet package.

The central abstraction of the Servlet API is the Servlet interface. The two classes in the Servlet API that
implement the Servlet interface are GenericServiet and BttpServlet. Generally, developers implement
the Ht tpServiet interface to create their servlets for Web applications that employ the HTTP protocol.

The basic Servlet interface defines a service () method to handle chent requests. This method is called for each
request that is routed to an instance of a servlet by the Servlet container.

The contract between a Web application and a Web container is provided by the javax.servlet package. This
allows Servlet container vendors to focus on developing the container in the manner most suited to their
requirements (or those of their customers), as long as the package provides the specified implementations of the
interfaces used in a servlet. The package provides a standard library to process client requests and develop
servlet-based applications, from a developer’s perspective.

The Servlet interface that defines the core structure of a servlet is provided in the javax.serviet package,
which is the basis for all servlet implementations. However, for most servlet implementations, the subclass from
a defined implementation of this interface provides the basis for a Web application.

The various interfaces and classes, such as ServletConfig and ServletContext, provide the additional
services to a developer. An example of such a service is the Servlet container that provides a servlet with access
to a client request through a standard interface. The javax. serviet package, therefore, provides the basis to
develop a cross-platform, cross-servlet container Web application, and allows programmers to focus on
developing a Web application.

Developers sometimes also use the javax.servlet.http package. Additionally, you need the
javax.servlet package to build serviet implementations that use a non-HTTP protocol. For example, you can

326

Working with Servilet Programming

extend classes from the javax.servlet package to implement a Simple Mail Transfer Protocol (SMTP) serviet
that provides an e-matl service to clients.

Let’s now discuss the interfaces, classes, and exception classes of the javax.servlet package.

Explaining the Interfaces and Classes of the javax.serviet Package
The javax.servlet package comprises fourteen interfaces. While building an application, a programmer can
implement seven interfaces, such as Servlet, and ServletRequestlListener. A Servlet container provides the
implementation for the following seven interfaces:
ServletConfig
ServietContext
ServletRequest
ServletResponse
RequestDispatcher
FilterChain
FilterConfig
The Servlet container must provide an object for the preceding interfaces to a serviet. The
getServletContext () method is probably the most important method of the ServletConfig Interface.
This method returns the ServletContext object, which communicates with the Servlet container when you
want to perform some action, such as writing to a log file or dispatching requests. There is only one
ServletContext object per Web application per JVM. This object is initialized when the Web application starts
and is destroyed only when the Web application shuts down. One useful application of the ServletContext
object is as a persistence mechanism. A programmer may store attributes in the ServletContext interface so
that they are available throughout the execution of an application and not just for the duration of a request for a
resource,

[O i o B R W]

The Servlet container provides the classes that implement the ServletRequest and ServletResponse
interfaces. These classes provide client request information to a servlet and the object used to send a response to
the client,

An object defined by the Requestbispatcher interface manages client requests by directing them to an
appropriate resource on the server.

The FilterChain, FilterConfig, and Filter interfaces are used to implement the filtering functionality in
an application. You can also combine the interfaces into chains, implying that you can chain them such that
before being processed by a container, the request is filtered through each filter defined in the application. The
response goes down the chain in reverse.

A programmer building a Web appifcation implements the following seven interfaces:

O Servlet

ServletRequestListener

ServietRequestAttributeListener

ServletContextListener

ServletContextAttributeListener

SingleThreadModel

Filter

The preceding interfaces are defined so that a Servlet container can invoke the methods defined in the interfaces.
Therefore, the Servlet container needs to know only the methods defined in the interfaces. The details of the
implementation of the methods are provided by the developers.

The event classes used to notify the changes made to the ServletContext object and its attributes are
ServetContextEvent and ServletContextAttributeEvent, respectively.

Doo0oDooo

327

Chapter 11

Initially, the system creates a single instance of a servlet. If a new request is received while the previous one is
being processed, a new thread is created for each new user request, with multiple threads running concurrently.
This implies that the doGet () and doPost () methods need to carefully synchronize the access to fields and
other shared data because multiple executing threads may access the data simultaneously. You can implement
the SingleThreadModel interface in a servlet, if you want to prevent this multithreaded access, as shown by
the following code snippet:

public, <l

If you implement the SingleThreadModel interface, the system ensures that a single instance of a servlet is
never accessed by more than one request thread. This is implemented by queuing all the requests and passing
them one by one to a single servlet instance. However, the server can create a pool of multiple instances, with
each addressing one request at a time. This implies that there is no need to worry about simultaneous access to
regular fields (instance variables) of a servlet. However, access to class variables (static fields) or shared data
stored outside the servlet still needs to be synchronized.

Synchronous and frequent access to servlets can significantly hurt performance (latency). The server remains idle
instead of handling pending requests, when a servlet waits for Input/OCutput (1/0). Therefore, think twice
before using the SingleThreadModel approach.

The SingleThreadMode! interface has been deprecated as of Java Serviet API 2. 4, with no direct replacement

Two classes, ServletRequestEvent and ServletRequestAttributeEvent , are used to indicate the life
cycle events and attribute events for a ServletRequest object. The ServletContext object of a Web
application is the source of the event.

To read or send binary data to or from a client, the ServletInputStream and ServletOutputStream
classes provide input and output streams, respectively,

Useful implementations of the ServletRequest and ServletResponse interfaces are provided by the
wrapper classes ServletReguestWrapper and ServletResponseWrapper, respectively. These
implementations can be subclassed to allow programmers to adapt or enhance the functionality of the wrapped
abject for their own Web application. This can be done to implement a basic protocol agreed between a client
and a server or to transparently adapt the requests or responses to a particular format that the Web application
requires.

Explaining the Exception Classes of the javax.serviet Package
The following two exceptions are present in the javax . servlet package:
D ServletException
0 UnavailableException
Generally, the ServletException exception is thrown by a servlet to indicate a problem with a user request.
The problem may be in processing a request or sending of a response.

Whenever the ServletException exception is thrown to a Servlet container, an application loses control of
the request being processed. [t is the responsibility of the Servlet container to clean up the request and return a
response to a client. Instead of sending a response, the Servlet container may also return an error page to the
client indicating a server problem, depending on implementation and configuration of the container.

A ServletException exception should be thrown only as a last resort. The preferred approach to deal with an
insuperable problem is to handle the problem and then return the type of the problem to the client.

An application throws the UnavailableException exception when a requested resource is not available.
The resource can be a servlet, a filter, or any other configuration details required by the servlet to process
requests, such as a database, a domain name server, or another serviet,

328

Working with Serviet Programming

Exploring the javax.serviet. http Package

The javax.serviet.http package contains some interfaces and classes that enhance the basic functionality of a
servlet to support HTTP-specific features, such as request and response headers, different request methods, and
cookies. As discussed earlier, there are two classes (GenericServlet and HttpServlet) in the Serviet APL,
which implement the Servlet interface. HttpServlet is an abstract class that extends the GenericServlet
base class and provides a framework to handle the HTTP protocol. The following section discusses the classes
and interfaces of the javax.servlet . http package.

Explaining the Interfaces of the javax.serviet.http Package

The javax.servlet.http package comprises the following eight interfaces:
HttpServletRequest
HttpServletResponse
HttpSession
HitpSessionBindingListener
HittpSessionContext
HttpSessionActivationListener
HttpSessionAttributeListener
HttpSessionListener
The HttpServletRequest interface retrieves data from a client to a servlet for use in the
HttpServlet.service () method. This interface allows the service () method to access the HT'TP protocol
specified header information. The Ht tpServletResponse interface allows the service {) method of a servlet
to manipulate the HTTP protocol specified header information. This interface also returns the data to its client.
The HttpSession interface is used to maintain a session between an HTTP client and the HTTP server. This
session is used to maintain the state and user identity across multiple connections or requests during a given
period.

W W R IR R i R Ry W}

The HttpSessionContext interface provides a group of the HttpSessions objects associated with a single
session. The getSessionContext () method is used by a servlet to get the Ht tpSessionContext object. The
HttpSessionContext interface also provides various methods to servlets to list the IDs or retrieve a session
based on the ID. The HttpSessicnActivationListener interface notifies a Web container about the
activation or passivation of a session object. The HttpSessionAttribute interface is implemented to receive
the nofifications of changes in the attribute lists of sessions within a Web application. The
HttpSessionListener interface notifies the changes made in the active sessions in a Web application.

NOTE |
The HttpSessionConlext interface has been deprecated as of Java™ Serviet API 2.1 for security reasons, with no
replacement.

The HttpSessionBindingListener interface has the valueBound() and valueUnbound(} methods to
notify a listener that it is being bound to a session or unbound from a session.

Next, we discuss the classes of the javax. servlet.http package.

Explaining the Classes of the javax.serviet.http Package
Apart from the interfaces, the javax . servlet.http package also has various classes, which are as follows:
Cookie
HttpServlet
HttpServietRequestWrapper
HttpServletResponseWrapper
HttpSessionBindingEvent
HttpSessionEvent

[R Ry |

329

Chapter 11

O Htpltils
HotpServlet is an abstract class that simplifies the writing of HTTP servlets. As HrtpServlet is an abstract
class, servlet programmers must override at least one of the following methods: doGet (), doPost{},

doPut (}, deDelete() and getServletInfo(). The HttpServletRequestWrapper class provides a
convenient implementation of the EttpServletRequest interface to adapt a request to a servlet. Similarly,
the HttpServletResponseWrapper class provides a convenient implementation of the
HttpServletResponse interface to adapt the response from a serviet. The HttpSessionBindingEvent
class communicates to the HttpSessionBindingListener object regarding bounding to or unbounding from
the HttpSession value. The HttpSessionEvent class represents event notifications for changes in a session
within a Web application. As already discussed, the HttpSession interface maintains a session and manages

. the session with the help of the Caokie class. The Ht tpUtils class is a collection of static utility methods useful
to HTTP servlets. After learning about the Servlet AP, let's discuss the servlet life cycle next.

Introducing the Serviet Life Cycle

Servlets follow a life cycle that governs the multithreaded environment in which the serviets run. It also
provides a clear perception about some of the mechanisms available to a developer to share server-side
resources. The primary reason why servlets and JavaServer Pages (JSP) outperform traditional CGI is the servlet
life cycle. Servlets follow a three-phase life cycle, namely initialization, service, and destruction. This three-phase
life cycle is opposed to the single-phase life cycle. Of the three phases, the initialization and destruction phases
are performed only once while the service phase is carried out many times.

The first phase of the servlet life cycle is initialization. It represents the creation and initialization of the resources
the servlet may need in response to service requests. All servlets must implement the
javax.servlet.Serviet interface, which defines the init {) method that corresponds to the initialization
phase of a servlet life cycle. As soon as a servlet is loaded in a container, the init () method is invoked before
servicing any requests.

The second phase of a servlet life cycle is the service phase. This phase of the servlet life cycle represents all the
interactions carried out, along with the requests that are handled by the servlet until it is destroyed. The service
phase of the servlet life cycle corresponds to the service{) method of the Servlet interface. The service()
method of a servlet is invoked once for every request. Then, its sole responsibility is to generate the response to
that request.

The service) method takes two object parameters, javax.servlet.ServletRequest and
javax.servlet.ServletResponse. These two objects represent a request for dynamic resource from a client
and a response sent by a servlet to the client, respectively. A servlet is usually multithreaded. This implies that a
single instance of a servlet is loaded by a servlet container at a given instance, by default. The initialization of the
serviet is done only once, and after that, each request is handled concurrently by threads executing the
service () method of the serviet.

The destruction phase is the third and final phase of the servlet life cycle. This phase represents the termination
of the servlet execution and its removal from the container. The destruction phase corresponds to the
destroy () method of the Servlet interface. The container calls the destroy {} method when a servlet is to be
removed from the container,

The invocation of the destroy() method enables the servlet to terminate gracefully and clean up any resources
held or created by it during execution. To efficiently manage application resources, a servlet should properly use
all the three phases of its life cycle. A servlet loads all the required resources during the initialization phase,
which may be needed to service client requests. The resources are used during the service phase and then can be
given up in the destruction phase.

We have discussed the three events or phases that form the life cycle of a servlet. However, there are many more
methods that need to be considered by a Web developer. HTTP is primarily used to access content on the
Internet. Though a basic servlet does not know anything about HTTP, a special implernentation of the serviet,
namely javax.servlet .http.HttpServiet hasbeen specifically designed for this purpose.

330

Working with Serviet Programming

When the Serviet container creates a serviet for the first time, the container invokes the init () method of the
servlet. After this, each user request results in the creation of a thread, which calls the service () method of the
respective instance. Though the servlet in question can implement a special interface, {SingleThreadModel),
which stipulates that not only a single thread is permitted to run at a time, but also multiple concurrent requests
can be made. The service() method then calls the doGet (), doPost {}, or any other doXXX () method.
However, the calling of the doXXX() method depends on the type of HTTP request received. Finally, when the
server decides to unload a servlet, it first calls the servlet’s destroy () method.

Let's now discuss the various methods used in the life cycle of the servlet.

The init() Method

As mentioned earlier, the init {) method is calfed when a servlet is created for the first time. It is not called
again for other user requests. Therefore, the init () method is used only for one-time initializations. A servlet is
normally created when a user invokes a URL corresponding to the servlet, for the first ime; however, the servlet
is loaded on the server when a Servlet container maps the user request to the servlet. The following code snippet
shows the init () method definition:

. publie vaid IpifEr ehrows SenvietErception
_J}x:%ﬂf«@i?i?‘?l

i LlLaphetT R SR T Byl

Reading server-specific initialization parameters is one of the most common tasks that the init () method
performs. For example, a serviet might need to know various information details, such as database settings,
password files, server-specific performance parameters, hit count files, or serialized cookie data from previous
requests.

When you need to read the initialization parameters, you have to first obtain a ServletConfig object by using
the getServletConfig() method, and then call the getInitParameter() method on the result. The
following code snippet shows how to obtain a ServletConfig object:
. pubYic veid dnit() thiv epuletExpeption. {

In the preceding code snippet, notice that the init () method uses the getServletConf ig () method to obiain
a reference to the ServletConfig object. The object has a get InitParameter () method, which can be used
to look up the initialization parameters associated with the servlet. Similar to the getParameter (} method
used in the init () method of applets, both the input (i.e., the name of the parameter) and the output (i.e, the
parameter value) are nothing but Strings.

You can read the initialization parameters by calling the getInitParameter() method of the
ServletConfig object. However, setting up these initialization parameters is the job of the web.xml file,
which is called Deployment Descriptor, which we discuss in the Understanding Servlet Configuration section of
this chapter.

The service() Method

Each time a server receives a request for a servlet, the server spawns a new thread and calls for the service ()
method. It is possible that the server spawns a new thread by reusing an idle thread from a thread pool. The
service() method verifies the HTTP request type (GET, POST, PUT, DELETE) and accordingly calls the
domet (), doPost (), doPut [}, doDelete () methods. A normal request for a URL or a request from an
HTML form that has no METHOD specified, results in a GET request. Apart from the GET request, an HTML form
can also specify POST as the request method type. The following code snippet explains the implementation of
the POST method:

dhtals - o e -

<form name="grestForm” method="post"> : o R e e e
Now, if you have a servlet that needs to handle both POST and GET requests identically, you may be tempted to
override the service{) method directly rather than implementing both the doGet(} and doPosti{)

331

Chapter 11

methods. However, remember, this is not a good idea. Instead, just you can use the doPost (} method to call the
doGet {) method (or vice versa), as shown in the foll

TRERL BT

ERT L

fpet]

In the preceding code snippet, the @verride annotation is used. Though this approach takes a couple of extra
lines of code, it has several advantages over the approach of directly overriding of the service () method. One
advantage is that you can add support for other HTTP request methods later by adding the deput (),
doTrace () methods in a subclass. Another advantage of using this approach is that you can add support to
retrieve the date on which modifications on data have been made by adding the getLastModified () method.
However, overriding the service{} method eliminates this option because the getLastModified() method
is invoked by the default service () method. Finally, as an added advantage, you can get autornatic support
for the HEAD, OPTION, and TRACE requests.

If a serviet needs to handle both GET and POST identically, the doPost() method should call the doGet{) method or vice
versa. Remember, you should not override the service() method directly.

During the entire request and response process, most of the time, you only care about the GET or POST requests,
Therefore, you override either the doGet () method or the doPost (} method or both. However, if required,
you can also override the following methods depending upon the request types:

U The doDelete() method for DELETE requests

@ The doPut() method for PUT requests

O The doOptions() method for OFTIONS requests

0 The doTrace() method for TRACE requests

Remember, however, that you have automatic support for OPTICNS and TRACE.

The doHead() method is not provided in versions 2.1 and 2.2 of the Servlet API, because in those versions the
system answers HEAD requests automatically by using the status line and header settings of the doGet ()

method. However, the doHead () method is included in version 2.3 to enable the generation of responses to
HEAD requests.

The destroy() Method

The destroy () method runs only once during the lifetime of a servlet, and signals the end of the servlet instance.
A Servlet container holds a servlet instance till the servlet is active or its destroy () method is called. The
following code snippet shows the method signature of the destroy () method:

ubY i woid destroy (O s sooier

As soon as the destroy () method is activated, the Servlet container releases the servlet instance,

NoTE Nl

it is not recommended fo implement the finalize() method in the serviet object; instead, provide the code for the
finalization tasks of an application in the destroy() method.

s

After learning about the life cycle of a servlet, let's understand servlet configuration.

332

Working with Serviet Programming

Configuring Servlet in web.xml

You may sometimes need to provide initial configuration information for a serviet. The configuration
information for the servlet may include a String or a set of String values, listed in the web.xml file as
initialization parameters required during the initialization of the servlet. Due to this functionality, servlets are
allowed to have initial parameters specified outside of the compiled code and changed without requiring
recompiling of the servlet. Each servlet has an object associated with it, called ServletConfig. This object is
created by the container and implements the javax.servlet.ServletConf ig interface. The
ServietConfig object contains the initialization parameter and you can retrieve the reference of the
ServletConfig object by invoking the getServletConfig{) method. The following code snippet shows the
method provided by the ServletConfig object to access an initialization parameter:
getInitrarameter(STRINGIRAMEY. . 77 il g e iy S I UL B i D) AL
The getInitParameter () method returns a String object that contains the value of the named initialization
parameter or null, if the parameter does not exist. The following code snippet shows the
getInitParameterNames() method of the ServietConfig object:

getInitParameterNames () o s e SRR e I R e e
The getInitParameterNames () method returns the names of the initialization parameters of a servlet as an
enumeration of String objects. An empty enumeration is returned by the method if the servlet has no
initialization parameters.

S G ST R B S T ey B

A servlet can define initial parameters by using the init-param, param-name, and param-value elements
in the web.xml file. Each init-param element defines one initial parameter. This initial parameter must
contain a parameter name and value specified by the param-name and param-value child elements,
respectively. A servlet may have as many initial parameters as needed. However, note that initial parameter
information for a specific servlet should be specified within the <servlet> element for that particular servlet.

A servlet can be configured with the help of the web.xm1 file, which lies in the WEB-INF directory of a Web
application. This file controls many behavioral aspects of the servlet and JSP. Many servers provide graphical
interfaces that allow you to specify initialization parameters and control various behavioral aspects of servlets
and JSP pages.

These graphical interfaces are server-specific. However, these interfaces also use the web.sxml file, which is
completely portable, The web.xml file contains an XML header, a DocTYPE declaration, and a web-app
element. To specify initialization parameters, the web-app element must contain a <servlet> element with
three subelements, which are as follows:

Q servlet-name

O servletclass

O init-param

The <servlet-name> element specifies the name that helps you to access the servlet. The <servlet-class> element

specifies the fully qualified (that is, a servlet class name is included with the package name) class name of the
servlet, and the init-param element specifies names and values for parameter initialization.

The Servlet 2.5 specification has introduced several changes to the web.xml file format to make its use more
convenient. For example, in the previous versions of Java Servlet, only one servlet could be bound to a filter at a
time, as shown in the following code snippet:

sl f tensmapings: sk :
In the preceding code snippet, the MyServlet servlet is mapped to the MyFi1ter filter; however, in Servlet 2.5,
you can bind all servlets at once by using an asterisk. The asterisk is used in the <servlet-name> element to
represent all servlets. The following code snippet shows you how to bind all servlets to the MyFilter filter at

once;

e
T

Chapter 11

<sarvlet~name>*</serviet-name>
</filter-mapping> : v 2
Apart from this, Serviet 2.5 provides support for configuring mult:ple patterns for a fllter [n the earher versions
of Java Servlet, you could use the <filter-mapping> element with just one <url-pattern>element, whereas Servlet
2.5 supports multiple <url-pattern> elements. Consider the following example in which multiple <url-pattern>
elements have been provided for the MyServlet servlet:
(sserviet-mapping> :
: <serv'let-—name}MyServ’tekfserﬂe‘l:-name> .
" eurl-patterns/serviet/*eurl pattern
: <xrr‘!wpmm>fservht/*<ﬂﬂmpamm
</serviet-mapping>. , : : i N .
Listing 11.1 provides a sample web xml flle, whnch maps to a smgle serviet named FlrslServlet (you can fmd this
file on the CD in the code\JavaEE\Chapterll1\FirstApp\WEB- INF folder):

Listing 11.1: Displaying the Code for the web.xml File
“<Ruml verstons1.0" -encoding="UTr-8"7>
2.5 ;

ffwsm%uex:ﬂﬁﬁg»
"< /webrapps: :

In Listing 11.1, the wek . xm1 file contains an XML header a DOCTYPE declaratlon and a web app element The

<gservlet-name> element contains the name of the servlet and <servlet-class> contains the fully qualified

class name of the servlet. The <servlet-mapping> element contains two subelements, <servlet-name> and

<url-pattern>. The <serviet-name> element contains the name of the servlet as provided in the

<servlet> element.

Before you learn to create a servlet, its important to understand the ServletConfig and ServietContext
interfaces. So let’s explore these interfaces in the next section.

Working with ServletConfig and ServletContext Objects

ServletContext objects help to provide context information in a Servlet container. A ServletContext
object is used to communicate with the Servlet container while ServletConfig, which is a servlet
configuration cobject, is passed to the servlet by the container when the servlet is initialized. A ServletConfig
object contains a ServletContext object, which specifies the parameters for a particular servlet while the
ServletContext object specifies the parameters for an entire Web application. The ServletContext object
parameters are available to all the other servlets in that application,

The following code snippet sets an attribute named name with the value Pallavi Sharma:

“publig void: mﬂ:(;saerwetconﬁg copfig): throws: ServietException {0 "o

i superinit(config);
" g ;;qnﬁ _getSew’Ietcantext() sem

In the precedmg code smppet, the ca!l to the super.init (config) method ensures that the
GenericServlet class receives a reference to the ServletConfig object. The implementation of the

334

Working with Serviet Programming

GenericServlet class maintains a reference to the ServietConfig object and requires the invocation of the
super.init {config) method in subclasses.

In the preceding code snippet, config is the instance of ServletConfig passed as an argument to the init ()
method. The setattribute (} method is used to set the value of the name attribute. The value of this attribute
is accessed with the help of the getAttribute () method. This attribute is available for all the servlets in the
Web application and can be accessed in any serviet.

Now, let’s learnt how to create a servlet.

Creating a Simple Servlet

Let’s create a simple servlet in the Firstapp application, which handles HTTP request and sets the vaiue of the
name attribute at the initialization of the servlet, which is displayed on the browser. Moreover, the value of the
init-param, greeting, is set in the web.xml file. Listing 11.2 provides the code for FirstServlet servlet
(you can find this file on the CD in the code\JavaEE\Chapterll\FirstApp\src\com\kogent folder):

I.lstmg 11 2 Showmg the Code for the FustServlet]ava Flle

. response) " throws

The FlrStbeeret servlet handles the HttpRequest ob}ect and so the object is extended w1th the
HttpServlet class. The FirstServlet servlet overrides the init{) and doGet (} methods. The value for
the name attribute is set in the init () method. The doGet () method retrieves the value of the greeting
initializing parameter, which will be set in the web .l file. The doGet () method also displays the value of the

name attribute,

In Listing 11.2, the getServietContext () method of the ServletConfig object calls the setAttribute ()
method, to set the value and the getAttribute () method to retrieve the value of the name attribute. The
getInitParameter () method is used to retrieve the value of init-param, which will be set in the web . xml file
(Listing 11.3).

Create a JavaEE folder in the C: drive for the applications that you create in all the chapters of this book. This
folder can be found on the CD as well.

335

Chapter 11

Now, let's define directory structure for the Firstapp application lo store the FirstServiet servlet,
configure the servlet in the web. xml file, and then package, deploy, and run the Firstapp application.

Creating Directory Structure

The root directory for all the applications in this book is JavaEE and you will find a folder for each chapter in the
CD under this root directory. To run an application on your system, you can either copy the JavaEE folder from
CD to the C: drive or create a new JavaEE folder containing the folders for each chapter. For example, for this
chapter, the Chapter11 folder is created under the root directory, JavaEE.
Figure 11.6 shows the directory structure of the FirstApp Web application:
R R

B LD Chaoters

FirstServiet java
& FrstServiet2.ave
- 9‘; Lk zava
’ii Mzzalrvventory.;ava
@ FizzalrventoryConsumear iava
Q-f PrzzalrventoryCansumer i java

PizzalmyentoryServiet java
SinrairventorySuperdass. java

ShowForm, java
Shoeteaders java
ShowParameters,java

;"ﬁr@ E : =... :.,

&Ly wEane
;@ KD dasses

: [I

- web. i
Firstapp. war

Linie. vyt
mystyie.css
ShowFaem Nom

i ShowParametens himi

Figure 11.6: Displaying the Directory Structure of the FirstApp Application
In Figure 116, FirstApp is the name of the created application. Run the following command from the
C: \JavaEE \Chapterli\FirstApp\src\com\kogent location to compile the FlrstServlet servlet
RN 8 TN AVAEENChaPLEr I\ R reTADP\WER- INF\c TaE Ses. Finsrservistdava . i
The preceding command compiles the FirstServlet.java file and creates the com. kogent package that

contains the class file of FirstServiet. The com.kogent package is created under the classes folder (
Figure 11.6).

LHCS.

Configuring the Serviet

Configuration implies mapping a servlet and providing the initialization parameter values for it. Servlet
configuration for any Web application is done in the web.xml file. Listing 11.3 shows how to configure the
FirstServlet servlet (you can find this file on CD in the code\JavaEE\Chapterl11\FirstApp\WEB-INF
folder):

Listing 11. 3 Showmg the Code for the web. xml File

336

Working with Serviet Programming

c<serviets o

S &fin

-</serviaty -

<serviet-mappi _

- «<servigt-pamesFirstseeviet/servior-os

<url-patterns/FirstServiet</url-patterns

- _«url-pattern>/Fservliet</urt-patterns

</serviet-mapping>. > - 7] . oz :

G <sesston-confige- T

| <fsession-configs

<fwebapp>. oLl e e B :

The web. xml file is saved under the WEB- INF folder of the FirstaApp application { Figure 11.6). In Listing 11.3,

the FirstServlet servlet is mapped to two url-patterns (/FirstServlet and /FServlet). In Servlet 2.5,

you can provide multiple url patterns for a servlet in the web.xm1 file. In Listing 11.3, the greeting

initialization parameter is provided Welcome as its value. The FirstServiet serviet is configured to the
com.kogent .FirstServlet class.

Packaging, Deploying and Running the Web Application

Before deploying the FirstApp Web application, a Web ARchive (WAR) file is created to package the entire Web
application. Further, you need o deploy the application on the Glassfish application server and finally you can
run the application. Perform the following steps to package, deploy, and run the FirstApp application,

O Run the following command from the code\T avaEE\Chapterll\FirstApp location to create the
FirstApp.war file:
Jar sowf BIFSAPDLwArc: Ul oL ot g . o
The preceding command creates the FirstApp.war file in the FirstApp folder (Figure 11.6). The WAR file
contains the entire directory structure shown in Figure 11.6.

0 Start the Glassfish application server and open the http:/ /localhost:4848/ URL. The Login window appears.
O Enter admin as the user name and adminadmin as the password. After logging to the Web application, the
Index page of the application is displayed.

O Select the Web Applications option under Applications in the directory tree on the left side of the index
page, to deploy the FirstApp WAR file, as shown in Figure 11.7:

Comman Tasks
ET3n0ess S mALO ADCaE A 1A%k sEiect the Vel Bublon

g Deploymant Cthar Tasks
[I A iuamyzmws'e' . K ";"g“;mu;r.,. w
B comecar s AppkcaNon (w2 2 el

i T |
-

B srmator Siarsiion w - it w3

R Unimoue Zone o) Prowecd Hode. OF 74~ %303% 4

Javk EE &: Making Java EE Ewsier
View e wabwner i narry sbouk

Figure 11.7: Displaying the Admin Console of the Glassfish Server
After selecting the Web Applications option, the Web Applications pane is displayed (F igure 11.8),

337

Chapter 11

0 Click the Deploy buttor, as shown in Figure 11.8:

Y ‘,

n meTEIdn.Er
£.8 20dulen

Figure 11.8: Displaying the Web Applications Window

The Deploy Enterprise Applications/Modules pane is displayed (Figure 11.9).

0O Click the Browse button and locate the FirstApp.war file. The locatxon for the FirstApp .war file to be
deployed is shown in Figure 11.9:

Y Renes e Ao

:2 Deplay Enterprise Apphcaticns Modwes [~

. B I

Comenl ok e
_*& A e o .
T i s . ‘MM"_“EWM“ v R -

Figure 11.9: Displaying the Details of the Web Application to Deploy

The FirstApp.war file is uploaded and the general information of the Firstapp Web application
automatically updated in the required text boxes of the Deploy Enterprise Applications/Modules
pane.

@ Click the oK button to deploy the FirstApp Web application, packaged into the WAR file. After the
" application is deployed, you need to run the application to display the output.

Q@ Openthehttp://localhost:8080/FirstApp/FirstServliet URL. Figure 11.10 displays the output
of the FirstApp Web application:

| Welcome 4

i Pallavi Sharma

Figure 11.10: Displaying the Cutput of the FirstApp Web Application

Working with Serviet Programming

Alternatively, you can specify the URL pattern /FServlet in the address bar of the Web browser to access the
FirstServlet servlet. The http://localhost: 8080/FirstApp/FServlet URL also displays the same
output (Figure 11.10).

After creating and configuring a simple servlet by using Deployment Descriptor {the web.xm1 file), let’s
learn about the HttpServietRequest and HttpServletResponse interfaces of the Java Serviet APL

Working with the HttpServietRequest and HttpServietResponse Interfaces

We discussed earlier in this chapter that the most common HTTP requests are the GET and the POST methods.
You must implement these methods to handle different types of requests. The servlet container recognizes the
type of HTTP request made and passes the request to the correct servlet method. Accordingly, you do not
override the service () methods as you do for Servlets that extend the GenericsServiet class: rather, you
override the appropriate request methods.

Let's now learn about the HttpServletRequest and HttpServletResponse interfaces in detail in the
following sections.

HttpServietRequest Interface

An HttpServletRequest object always represents a client’s HTTP request. HttpServletRequest is an
interface and a subtype of the ServletRequest interface. The Web container provider implements this
interface to encapsulate all HTTP-based request information, including headers and request methods.

All properties, such as request parameters and attributes of the ServletRequest interface are also accessible
through the HttpServletRequest interface.

Let's learn about the implementation of the HttpServietRequest interface under the following subheads:
Q The role of form data

0 Form data and parameters

Q Headers

Q File uploads

The Role of Form Data

You can understand the role of Form Data better by considering a real-life scenario. When you use a search
engine, visit an online bookstore, track stocks on the [nternet, or ask a Web-based site for quotes on plane tickets,
you may have seen funny-looking URLs such as http://host/path?user=John+Smith&origin=
longdest=par. The part of the URL after the question mark (ie, user=John+Smith&origin=
lonsdest=par) is known as Form Data {or query data). This is the most common way by which a server-side
program gets information from a Web page. For GET requests, Form Data can be attached to the end of the URL
after a question mark (as in the proceeding example). For POST requests, Form Data can be sent to the server
separately.

CGI programming involves a tedious traditional approach of extracting the needed information from Form Data.
First, you have to read the data one way for GET requests {in traditional CGI, this is usually through the
QUERY_STRING environment variable) and in a different way for POST requests (by reading the standard input
in traditional CGI). Second, you have to separate the pairs at the ampersands and then separate the parameter
names {left of the equal signs) from the parameter values (right of the equal signs). Third, you have the URL-
decode values. All the alphanumeric characters are sent unchanged, but spaces are replaced with plus signs and
other characlers are replaced with %XX, where XX implies the American Standard Code for Information
Interchange (ASCII)‘ or International Organization for Standardization (ISO} Latin-1 value of the character. The
process is reversed for the server-side program. For exampile, if a user enters the values ~jim, ~robert, and
~hall into text fields with the name wsers in an HIML form, the data is sent as
users=37Ejim$2C+$7Erobert%2C+and+%7Ehall, and the original string is reconstituted by the server-side
program. Finally, the fourth reason that makes parsing Form Data in CGI programs a tedious process is that
values can be omitted (for example paraml=vallsparam2=sparam3=val3) or a parameter can have more

339

Chapter 11

than one value (for example paraml=vallsparam2=val2¶ml=val3}. Therefore, special cases need to be
applied in your parsing code for these situations.

Form Data and Parameters

One of the important features of servlets is that parsing of a form is handled automatically. You only need to call
the get Parameter () method of the HttpServletRequest object with the case-sensitive parameter name
as an argument. The get Parameter () method is used in the same way when data is sent by the GET request as
when it is sent by the POST request. The servlet can identify which request method is used and automatically
returns the String value according to the URL-decoded value of the first occurrence of that parameter name. If
the parameter exists but has no value, an empty String is returned. In addition, if no such parameter exists,
null is returned. You should call the getParametervalues () method (which returns an array of Strings)
instead of the getParameters{) method (which returns a single String), if the parameter can potentially
have more than one value. The return value of the getParameterValues {}) method is null for parameter
names that do not exist. A single element array is returned when only a single value exists for the parameter.

Parameter names are case-sensitive; therefore, for example, request.getParameter("Paraml") and
request.getParameter(“paraml”) are not interchangeable.

Finally, for debugging, it is sometimes useful to get a full list of parameters, although most real servlets look for
a specific set of parameter names. You can use the getParameterNames{) method to get the list of
parameter names in the form of an enumeration, each entry of which can be cast to a String and used in the
getParameter () or getParameterValues() method. You should note that the order in which the
parameter names appear within the enumeration is not specified by the KttpServletRequest interface.

Let's now discuss the role of request parameters. Perhaps the most commonly used methods of the
HttpServletReguest object are those that involve getting request parameters: getParameter () and
getParameters{). Whenever an HTML form is filled and sent to a server, the fields of the form are passed as
parameters. This includes any information sent through input fields, selection lists, combo boxes, check boxes,
and hidden fields. However, the form submission excludes file uploads. Any information passed as a query
string is also available on the server-side as a request parameter. The HttpServletReguest object includes the
following metheds to access request parameters:

1 getParameter{java.lang.String parameterName)-Takes a parameter name as a parameter and
returns a String object representing the corresponding value. This method returns nuli when it does not
find a parameter of the given name.

O getParameters(java.lang.String parameterName)-—Allows you to get all the parameter values
for the same parameter name returned as an array of Strings. The getParameters {) method is similar to
the getParameter () method. However, note that the get Parameters () method should be used when
there are multiple parameters with the same name. Often, an HTML form check box or combo box sends
multiple values for the same parameter name.

O getParameterNames ()—Returns the parameter names in the form of an enumeration, which are used in a
request. This method can be used with the getParameter{) and getParameters () methods, to obtain a
list of names and values of all the parameters included with a request.

Let’s now create a servlet that reads and displays all the parameters sent with a request. You can use such a
servlet to get a little more familiar with parameters, and to debug HTML forms by seeing the information being
sent. Listing 11.4 provides the code for such a servlet (you can find the ShowParameters. java file on CD in
the code\JavaEE\Chapterll\FirstApp\srcicom\kogent folder):

Listing 11.4: Displaying the Code for the ShowPara

meters.java File

et

1o docetinttpservietRequest request; RtitpservldtResporise
Sﬁ)?ﬁth!‘@l&‘?l@ﬁxf;@t‘im; ‘Serviettxception { B P B

Working with Serviet Programming

response. setContentType(text/himit): = . Cal B R
Printwriter. out = response.getwriter();~ 70
out.println("<head>"); - .0 T L Tl
out.println("<title>Request HTTP. Parameters sent</titles")i
out.println("</head>"}; : . B ;
out.printin{"<body>"); . = A U L
out.printin("<p>Parameters sent. with request:</ps"); ... °
Enumération énm = request.getParameterNames ()’
while ‘(enm hasMoreElements()) { ; L :
. String phame = (String) enm.nextelement(); - P T
- -Stringl] pvalues = request.getParimetervalues(pName);
QUL print{("<bs"spName + Txfbsi M)e L LU LT T
-for (int i=0;i<pvalues.length;i++) {
') out.print(pvaluesil}; .

out. print " </bodys= ")y
eut.printin(i</htmi>") ;o

P

ut.print("<brs"); -

< %mme void: doPost(HttpservietReguest requast, Het
response) - thi‘ows TOException; ServietExcepris o
} doGet(request, resp S

Save the ShowParameters. java file in the sro\com\kogent folder (Figure 11.6) and compile and deploy the

ShowParameters servlet in the Firstapp Web application with a mapping to the /ShowParameters path.

Now, create a few simple HTML forms and use the servlet to see the parameters being sent. In Listing 11.5,

ShowParameters.html provides a sample HTML form (you can find this file on the CD in the

code/JavaEE/Chapter11/FirstApp folder);

Listing 11.5: Showing the Code for the ShowParameters.html File

... <input - ad10 - name=_importance” value='very'»very,.
<input ‘types"radio” name="importance” value="normal sNormal,
T<input’ type="radid” name="importance™ valuk="not"sNot< s
comment ek iy ey A T PIR L R
<téxtarea name="textarea” cols="40" rows="5"~s/tdxtarear<hrs

"7 <input value="Submit" type="submit"> o D L Eb
</Form : L g B : S
</body> S e
</html> : .) . S e
Save the ShowParameters.html file in the base directory of the FirstApp Web application and deploy the

new WAR file. After deploying the file, browse the following URL:
http:/ /localhost:8080/ First App /ShowParameters. htm!

Chapter 11

The ShowParameters HTML page is displayed, as shown in Figure 11.11:

ik w s.mm-asnu- e .bshm..,

8 Eiempie TV Feim ’ T Fy e B v o dm o Qage Seye Tgonv @
‘] To debug 3 HTML form seb 43 "achon’ 2ttributa to refacancea the ShowbParametars Serster
[Name:
Password
Selett gox: Opion1 -
[imgportance: -vere, Momal, + Mot
] Comment:

Figure 11.11: Displaying the ShowParameters Page

After entering the relevant details in the HTML form (Figure 11.11}, the parameters are sent to the
ShowParameters servlet. The parameters sent from the HTML page appear, as shown in Flgure 11.12:

B RequestHTTD Parameters Semt S B - B -t 4 v Pages Gefevv Tookiv e

1 Parameters semt with request

| mame: Palmi

‘| password: Paltmr

i selectbox opuond

.| ispertance:yery
textarea: Ay Comment

Figure 11.12: Displaying the Request HTTP Parameters

On the server-side, each piece of information received from an HTML form is referenced by the same name as
defined in the HTML form and is linked to the value that a user has entered for the respective field. The
ShowParameters servlet calls the getParameterNames {) method to retrieve a list of all the parameter names
and subsequently calls the getParameters () method to retrieve the matching value or set of values for each
name. The following code snippet shows the segment of code shown in Listing 11.4 that retrieves the list of
pararneters along with their respective values:
;] ationhm ‘request . getParameterNanes () i R Y e $
recienentsO) L - D
(string) wmis imer

A servlet can fetch information from HTML clients by using parameters. The ShowParameters servlet only
takes the parameters from the HTML page and displays them back to a client. However, normally, these
parameter values are combined and processed with other code to generate responses. Later on in the book, you
learn to use this functionality with servlets and JSP to interact with clients, including sending e-mail messages
and user authentication.

HTTP Headers

HTTP headers are set by a client to give information to a server about software that the client is using and how
the client wants a server to send back the requested information. HTTP request headers can be accessed from a
servlet by calling different methods, which are as follows:

342

Working with Serviet Programming

U getHeader(java.lang.String name)—Returns the specified request header value as a String. This
method returns null if the request does not include a header of the specified name. The header name is case
insensitive. A user can use this method with any request header.

0 getHeaders(lava.lang.String name)—Returns all the specified request header values as an
enumeration of String objects. Sometimes, a client can send the header values as an enumeration of String
objects, rather than sending the header as a comma-separated list. Each of these headers can have a different
value. If the request includes no header of the specified name, this method returns an empty Enumeration
object. The header name is case insensitive in this method also as well. The user can use this method with
any request header.

0 getHeaderNames ()-Returns an enumeration of the names of all the headers sent by a request. In
combination with the getHeader (} and getHeaders () methods, the getHeaderNames () method can
be used to retrieve the names and values of all the headers sent with a request. Some containers do not
allow access to HTTP headers. In that case, null is returned.

O getIntHeader {java.lang.String name)-Returns the value of the specified request header as an int
type. A value of -1 is returned by this method if the request does not contain a header of the specified name,
A NumberFormat Exception exception is thrown if the header cannot be converted to an integer.

Q getDateHeader (java.lany.String name)-Returns the specified request header value as a long value
representing a Date object. The returned date is counted as the number of milliseconds since the epoch. The
header name is case insensitive. A value of -1 is returned if a request header of the specified name is not
found. An T1legalArgumentExcept ion exception is thrown if the header cannot be converted to a date.

In this way, you can see that HTTP request headers are very helpful to determine diversified information, which
can be obtained by calling the preceding listed methods. In the later chapters of the book, HTTP request headers
are used as the primary resource to mine data about a client. This includes identifying what language a client
would prefer, what type of Web browser is being used, and whether or not the client can support compressed
content for efficiency. For now, it is helpful to understand that these headers exist, and to get a general idea
about what type of information the headers contain. Listing 11.6 creates a servlet designed to do just that. Save
the code of the showHeaders . java file in the /src/com/kogent directory of the FirstApp Web application,
created in Figure 11.6. Listing 11.6 shows the code for the ShowHeaders class (you can find this file on the CD
in the code\JavaEE\Chapterl1\FirstApp\srci\com\kogent folder):

Listing 11.6: Displaying the Code for the ShowHeaders. java File

Chapter 11

Compile the ShowHeaders servlet and configure the servlet to the /ShowHeaders path in the web.xml file. The
following code snippet provides the configuration of the ShowHeaders servlet in the web.xml file;

<serviet>
“ «serviet-namesShowHeaders</serviet-name>
c.xservliet-classscom, kogent. ShowHeadars</serviet-classs>
c</serviets . : s :
<servlet-mapping> . . :
<serviet-name>ShowHeaders</serviet-name>
Yo eurd-patterns/ShowHeaders</url=pattarn>
</serviet-mapping>
Deploy the FirstApp Web application and after reloading the Web application, browse to
http://localhost:8080/FirstApp/ShowHeaders to view a listing of all the HTTP headers sent by your

browser, Figure 11.13 shows the details of the HTTP headers:

o Famrte io 0 SuggeiledSHor v @ Web Shee Galary v

i Requearc HTTR Hedsins W orLE o A v Bagev Jalen s Tosle e

| TP bonders ceat by o chient

acce mumge fpeg applialon ¥ en-appusation mage . apphican.n -l quage pipes apyboancn -
me-vhap dppicaton wwd mi-ered, apphiabos vad ms-pomerpoict. appiscabon mssord apphs o x-
shocksave-flask. * *
accept-language -l
aseragenr Mozlla &
2080727 NETC
accepteacodi
o5t locathost
cownection Keep-Alne

sookie JSZSRONID=53UL 1701000 66" Fith 1rad® weeT orwn 2e-tu-n seFom: Tecappl anons

Figure 11.13: Displaying the Request's HTTP Headers

Listing 11.6 is a good example to illustrate how headers are normally sent by a Web browser. They are self-
descriptive and can therefore be understood easily. You can probably imagine how these headers can be used to
infer browser and internationalization information. Table 11.1 lists some of the most relevant request headers;

Table 11.

TR

wmpatids. MSE 34 Wndews NT 6 Trident 4.0, $LOCL NETUTR
"0 NETCLR 32 50720 Meda Cenrer PC 5 0: TnboPark 2)

{ Accept Specifies certain media types that can be acrepted for a response. Accept headers can be used 1o

specify that the request is limited to a set of desired media types. i
Accept-Charset Indicates the character sets that can be accepted for a response. This header accepts clients that can :

understand comprehensive or special-purpose character sets. Due to this, the server can represent
responses in those character sets. All user agents can accept the IS0-8859-1 character set.

Referer (sic) Allows a client to state the address (URI) of the resource from which the Request UKl was
obtained.
Accept-Language Restricts the set of natural languages that are preferred as a response to a request. Otherwise, this

header is similar to the Accept -Character header.

Host Specifies the Internet host and port number of a requested resource, as obtained from the original
URL given by a user or referring resource, This header is mandatory for HTTP 1.1.

User-Agent Contains information about the user agent (or browser) making a request. This header is used for
statistical purposes, to trace violations of protocol, and to automatically recognize user agents.

File Uploads

File uploads are simple for HIML developers but difficult for server-side developers. Usually, discussions on
Servlets and HTML forms conveniently skip the topic of file uploads. However, a servlet developer must have a
good understanding of HTML form file uploads. For example, consider a situation where a client needs to
upload something besides a simple string of text, such as a picture. In this case, using the getParameter ()

344

Working with Serviet Programming

method will not work because it produces unpredictable results. Therefore, to read the uploaded picture, the
Servlet APl provides the MIME type.

There are two primary MIME types for form information, application/x—www-form-urlencoded and
multipart/form-data. In the MIME type application/x-www-form-urlencoded, the results in the
Servlet APl automatically parse out name and value pairs. The information is then available by invoking
HttpServletRequest getParameter () or any of the other related methods as described earlier. The second
MIME type, multipart/£form-data, is usually considered difficult, because the Serviet APl does not provide
any support for it. The information is left as it is and you are responsible for parsing the request body by using
either the getInputStream(} or getReader () method.

The Request For Comments (RFC) 1867 memo provided at the http: //www.ietf. org/rfc/rfcl867. txt
URL explains the multipart/form-data MIME type and the format of the associated HTTP requests. You can
determine how to properly and appropriately handle the information posted to a servlet, by using RFC. This is
not a difficult task and is usually not needed, because other developers create complementary APIs to handle file
uploads. We discuss this later on in this chapter.

A user can actually look at the content of a request when the multipart/form-data information is sent. For
this, create a file-uploading form and a servlet that reproduces the information obtained from the
ServletInputStream object. Listing 117 provides the code for such a servlet that accepts a
multipart/form-data request and displays its content as plain text {you can find the ShowForm java file on
the CD in the code\JavaEE\Chapterll\FirstApp\src\com\kogent folder):
Listing 11.7: Displaying the Code for the ShowForm java File
package com.kogent; . .. -
import java.util.*;
import java,io.*; T
import javax.serviet.*; - o
import javax.serviet.http, %5 .0
public class ShowForm extends HrtpServie
public .void dopost{Httpserv
_response) tHrdws 'TOExce

! m-.;}ut_tpser :latii_es'poase;,= -
eption {

Save the preceding code as ShowForm.java in the /src/com/kogent directory of the Firstapp Web
application. Configure the $howForm serviet to /ShowForm inthe web.xml file by using the following code
snippet:

wserviet>
<serviet-names>showForm</serviet-names
<serviet~class>com. kegent. ShowForms/serviet-class>
</serviets - SRR o
«serviet-mapping> : o
<serviet-name>ShowForme/servlet-names> - .
<url-patterns/ShowForm</url-patteris "
</serviet-mapping> LTalel : A SR
Now, any information posted by any form can be viewed by directing the request to
http://localhost:8080/FirstaApn/ShowForm. You can run the ShowForm servlet only after creating an
HTML form used to upload a file. Listing 11.8 provides the code to create an HTML page (you can find the

ShowForm.html file on the CD in the code\JavaEE\Chapterll\Firstapp folder):

345

Chapter 11

346

Listing 11.8: Dlsplaymg the Code for the ShowForm.html File

ﬂitleaﬁxmme HMNL Fomfﬁ tTes -

i sﬂ'lﬁﬂlﬁ r'el sty'lzsheet" href ‘mysty]é.css"* type-:“textfcss"b

p>The Shmf‘om serv?et wﬂ‘l d1sp‘tay the content. pbsted by an: n‘mn T
. ! WA Ty T out by ‘cheosing a File (‘smaﬂeﬁ s1ze '15 preferred) 20
S e reference the ShowForms. Serviet. </p> e

“<form action="ShowForm” method="po FR

BN ; enctype== mu1t1part/€om daﬁa 5 . R

o WName anput type= text" ua:ne;-"name">
 EECI
;Fﬂg. ~<input type= “File' p.men"F11e">
 R .
< nput ya:'tue="5ubm1t type=" subm1t“> o LR

: {Fom:-
.:}bodw
<f html> -

Save the code shown in Listing 11.8 as ShowForm. html in the base dLrectory of the FlrstApp Web appllcanon

and browse the http: //localhost : 8080 /FirstApp/ShowForm. html URL. A small HTML form with two
inputs, a name and a file to upload is displayed, as shown in Figure 11.14

" p Favorter s W Suggesied Sites ~ @ Web Sice Galiery ~
ompe D Fom o hre -

oo v beger Sey - Teonv g 7

‘1 The ShowForm Serslet will dispiay the content posted by an HTML farm. Try it out by cHocsing a fite (smaller
i size 15 preferred) to reference the ShowForm Servler.

Name:
| Fite:

P

Figure 11.14: Displaying the ShowForm Page
Enter appropriate values for the Name and File fields in the form (Figure 11.14). In this case, a small file is
preferred because its content is going to be displayed by the ShowForm Servlet. A good candidate for a file to be
uploaded is ShowForm.html. After entering the values, click the Submit button to show the content of the

uploaded file. For example, using ShowForm.htmi as the file displays a form similar to the one shown in Figure
11.15:

sTavsETiInapterd FizstRppi Szl

Q)Exe'rsp.e ETHL Forme
elmtEr ies et LYl

LTEa" T pewrTixsiossTiy

« TI7 oAt Sut BY Jnesaing & file

Figure 11.15: Displaying the Output of the ShowForm.html File

Working with Serviet Programming

The following line is displayed in Figure 11.15 depicting the unique token for the start portion of the multipart
of the uploaded file:

----- i m e s ww v e e - === 7d a2 F3d90a £O . : :
The preceding line declares the start of the multipart section and concludes at the ending token, which is
identical to the start but has -- appended to it. Between the starting and ending tokens are sections of data
{possibly nested multiparts) with headers used to describe the content, For example, the Content-Disposition
header, which describes a form parameter, is displayed as follows:

Content-Disposition: form-data; name="name"
pPallavi E o .
The Content-Disposition header defines the information as part of the form and is identified by the name
“name”. The value of name is the content that follows it. By default, the MIME type of name is text/plain. The
uploaded file is described in the second multipart, shown as follows:
Content-Dispositi on:form-data; name="file"; .~
filename="Cs\JavaEENChapterliNFi rszapp\ShowForm. html"”
content-Type: text/htm] :
<html1> o
<head> L el :
<title>Example WTML Form</titles .
<link rel="stylesheet” href="mystyle.css" type="text/css"/>
</heads S T RN TR
<body> | .
<p>The ShowForm =~

In the preceding code snippet, the Content-Dispositioﬁ header specifies the form field name to be filled, which
corresponds to the field name listed in the HTML form, and describes Content-Type as text/html, as it is not
text/plain. The output after the Content-Type header includes code of the ShowForm.html file.

So far, you have learned how the HttpServletRequest object is used to retrieve HTML form parameters from
a request by using the getParameter () method. The HttpsServletRequest object is also used to retrieve
HTTP request header information, upload a file by using the getInputStream() method, and display the
content of the uploaded file by using the getWriter () method of the HetpServietResponse object.

After discussing the implementation of the HttpServletReguest interface, let's learn about the
HttpServletResponse interface.

Using the HttoServietResponse Interface

The HttpServletRasponse object helps to set an HTTP response header, set the content type of the response,
or redirect an HTTP request to another URL. Let's discuss the implementation of the HttpServietResponse
interface.

In the previous section, we discussed how to send information back to a client. The HetpServletResponse
object is responsible for this functionality, which creates an empty HTTP response. Custom content can be sent
back by obtaining an output stream by using either the getWriter () or getOutputStream{) method to
write the content. A suitable object is returned by these two methods to send either text or binary content to a
client. Only one of the two methods can be used with a given HttpServletResponse object. An exception is
thrown if you try calling both the methods. The HttpServletResponse object is also used to provide a
PrintWriter instance to print the response on a browser. The following code snippet displays the welcome
message on the browser:

Printwriter out = response.getwriter();
out.printin(®<html>"); | - =
out,printin(’<head>");) T
out.printin("<titleswelcome Message</title>™);
out. println("</head>"); " . - R
out.printin(<body>"); - oob niooras o
out.printin("<p>Welcome to the Users</p>");

347

Chapter 11

In the preceding code snippet, the getwriter() method is used to get an output stream to send the HTML
markup. When you use an instance of the PrintWriter object, you need to provide a String object and call
the print (), println(), orwrite () method.

In this section, yvou learn about the implementation of the HttpServletResponse interface under the
following heads:

O Response header

O Response redirection

O Response redirection translation issues

O Auto-refresh/wait pages

Response Header
The HttpServletResponse object is used to manipulate the HTTP headers of a response and to send the
content back to a client. HTTP response headers inform a client the type and amount of content being sent, and
the type of server sending the content.

The Ht tpServletResponse object includes the following methods to manipulate HTTP response headers:

Q addHeader (java.lang.String name, java.lang.String wvalue)—Adds a response header
having the given name and value. This method can be used to create response headers with multiple values.

O containsHeader{java.lang.String name}-Rehrms a Boolean value that indicates whether the
named response header is already been set or not.

0 setHeader (java.lang.String name, java.lang.String value!-Sets the name and value of a
response header as specified in the arguments. The previous value is overwritten, if the header is already
set. The containsHeader () method can be used to test whether a header is already present or not, before
setting its value.

U setIntHeader(java.lang.$tring name, int value)-Sets the name and integer values for a
response header, as specified in the arguments. The previous value is overwritten, if the header is already
set. The containsHeader{) method can be used to test whether a header is already present or not,
before setting its value.

O setDateHeader{java.lang.$tring name, long date)-5ets the given name and date values for a
response header. The date is provided in terms of milliseconds since the epoch. The previous value is
overwritten with the new value, if the header is already set.

0 addintHeader (java.lang.String name, int value}—-Adds a response header having the name
and integer values, as specified in the arguments. Response headers can be assigned muitiple values when
created by using this method.

U addDateHeader (java.lang.String name, long date)—Adds a response header having the name
and date values, as specified in the arguments. The previous response header values are not overwritten
and response headers can have multiple values.

Table 11.2 provides a description of the HTTP response header fields and their values:

Table 11.2: Response Header Fields and their Values

o Hakdiiibe Lokl s
Age Represents the estimated time since the last response generated from the server. The value of this

header field is usually a positive integer.
Content-Length Indicates the size of the message body, in decimal number of octets (B-bit bytes), sent to a recipient,
Content-Type Refers to the MIME type corresponding to the content of an HTTP response, A browser can use this

value to determine whether the content is rendered internally or launched to be rendered by an
external application.

Date Represents the date and time at which a message originated,

348

Working with Servlet Programming

Table 11.2: Response l:leader Fields and theirw\rlalues

Locaticn Specifies the location of a new resource in case HTTP response codes redirect a client to such a
resource. The location is specified as an absolute address.

Pragma Specifies the implementation-specific directives that may be applied to any recipient along the
request-response chain, No-cache, which indicates that a resource should net be cached, is the most
commonly used value, ;

Retry-After Indicates the tentative duration for which a service is unavailable to a requesting client, It is used
with a 503 (Service Unavailable) response. A date can be returned as a value of this field. The value
can also be an integer representing the number of seconds (in decimals) after the time of the response.

Server Represents information about the server that generated the current response, as a String value.

Response Redirection

In this section, the response code of HTTP and its different functions have been discussed. The setStatus ()
method of an HttpServletResponse object can be used to send any HTTP response code to a client. The
servlet sends back a status code 200, OK if everything works smoothly. A status code of 302 is sent by the servlet
displaying the Resource Temporarily Moved message, which informs a client that the resource they were
looking for is not at the requested URL, but can be found at the URL specified by the Location header in the
HTTP response, The 302 response code is very helpful because almost every Web browser automatically follows
the new link without informing the user. This allows a servlet to take the request of a user and forward it to any
other resource on the Internet.

The 302 response code has excellent uses besides its intended purpose. The reason for this is that the 302
response code has a very common implementation. Most websites often track the users who visit their sites to
get an idea about their interests so that they can send information related to their interests. The technique for
tracking website users requires the extracting of the referrer header of an HTTP request. This makes it easy
to keep track of the information sent by a site. The problem originates because the link on a site that directs to an
external resource also sends a request back to the originating site from where it was sent. To solve the problem, a
clever trick can be used that relies on the HTTP 302 response code. In this trick, rather than providing direct links
to external resources, all links can be encoded in such a way that they all lead to the same servlet on your site,
but at the same time, the real link can be included as a parameter. After that, link tracking can be implemented
by providing the intended link through a servlet. In addition, a 302 status code is sent back to the client along
with the real link to visit.

HTTP-aware sites commeonly use a servlet to track links. The HTTP 302 response code is used very often because
it provides the sendRedirect () method in the KttpServietResponse object. The sendRedirect ()
method takes one parameter, a String, representing the new URL, and automatically sets the HTTP 302 status
code with appropriate headers. Using the sendRedirect () method and the java.util Hashtable class, it
is easy to create a servlet to track the links used. Let’s create a servlet, named Link, to understand the use of the
sendRedirect () method. Listing 11.9 shows the code for the Link. java file (you can find the Link.java
file on the CD in the code\JavaEE\Chapterll1\FirstApp\srci\com\kogent folder):

Listing 11.9: Displaying the Code for the Link java Flle

package com. kogent; . . Ehe RPN ;
import Java.util fg oo sl e T s T T
“mport java.m.*-i' L BT P e e :
wmpﬁrt éiavax.semm *;
ort: wﬁmletabﬁﬁﬁ

349

Chapter 11

pubiic void doGet (HttpServietRequest request, HttpSerﬂetResponse
response)} throws IOException, ServietExceptwn {
StrTng Ink = request.getParameter({"1ink"); IR _
i (tek L= null 8& 1 ink.equals("")) € PR
synchronized (inks) {
Integer count = (Integer) hnks get(1nk),
if (count == null) {
Tinks. put(]nk, new Integer(l))

else {)

Yinks.put(Ink, new

Integer(1+caunt 1ntva1ue())),

. 3} :

i -response.5endRedirect(1nk);'

else: {-

‘ response. setcantentType("text/htm]“),

PrintWriter out = response. getwr1ter(),
request.getsSession();
out.printin("<htmi>");
_out.println(“<head>"); . .]
out. print1n(“<t1t1e>LTnks Tracker Servlet</t1t1e>"),

U ot printIn(</ heads ™) . _ _

Ch ourEl pr!ntin("cbndyb”)'= B

. out.printinC"«pLinks Tracked Slnce) -

~.put. erzntTn(stamp* e/),. - “.._i

R & 4 inks sizeQ =001 - o i

T . Enumeratioh enm = 11nks keys(),. :

wh11e {enm, hasMorEElements(}) {

Str1ng key = (Strﬂng)enm nextETement(),

Snt count = -

((Integer311nks 9et(key)) intValue(), .

out prant]n(key+ : +count+ v1s1t5
"),

Celse '
_‘} out pr1nt1n("No ”fmks have been trackedl
")

out. println("</bady>") ;-
out . pristIn{"</henl>");

oo 1 . , . _
public void doPost(ﬂttpSerﬂetRequest request,. Httpservletnesponse

response) throws IOException, ServTetExceptmn
daGet(request. response),

H

Some links used by the Link servlet class are needed to complement the Link servlet. The links can be encoded
properly to redirect a user to any resource. Encoding the links only requires passing the real link as a link
parameter in a query String. The code given in Listing 11.10 is that of a simple HTML page that includes a few
properly encoded links. Save the HTML code provided in Listing 11.10 as Link . html in the base directory of
the FirstApp Web application. Listing 11.10 shows the code for the Link . htm1 file {you can find this file on

the CD in the code\JavafE\Chapterli\FirstApp folder):

Listing 11.10: Dlsplaymg the Code for the Link.html File
<htmi>

<head>
’ <tit1e>50me Lanks Tracked by the LTnkTrackeF Servlet</title>
-~ <link re1=="sty1esheet hrefa“mystﬂe css“ type-"text/css"/>

</head> - .

A<body> o

i Scme good lunks for sarv1ets and Ise, Each 11nk is directed through;f.

SV the L'karacker Serviec. lick on a few and v1 s1t the . T

href=}Link‘>L1nkTracker 5erv¥et - :

. T POy .

350

Working with Servlet Programming

Java Product site</1i> :
<li»
Java Planet</1i> .
- <livea hrefz"t.“mk?'lmk—http //Java sur. com'’> -
.. Sun Microsystems</a- .
<ful>
</body>
After creating the new FirstApp.war file and deploymg the Firstapp Web appllcatlon, browse the
http://localhost:8080/FirstApp/Link.html URL. Each link is directed through the Link servlet,
which in turn redirects a browser to visit the correct link. Before each redirection, the Link servlet logs the
number of times the link has been visited by keying the link URL to an Integer object in a hashtable. You can
browse the http://localhost:8080/FirstApp/Link URL, to view information about the links vistted.
The results are same as of the last reloading of the Link servlet. This servlet does not log the information for
long-term use. Figure 11.16 displays the Link.html page that comprises multiple links:

Icu\huﬂ
w Fevorites | B Stgguled Shn - g Web SHce Gallery +

“Sﬂm!LIHkiTr!cke:fbyﬁ\tlnk'ﬁa:kllsn‘iﬂ C * B3 v .. mm v Ragew Sstety v Tgoliv #v ”

| scme good links for Servlets and 15P. Each ink is dwacted through the LinkTracker Sersdat Click on 3
1 Few and wsit the LinkTracker Serviet

* lava Produck Tite
» Java Planst
* Sun Microsyslems

Figure 11.16: Displaying the Link.htm| Page

After clicking each link multiple times, click the LinkTracer Servlet link. You are redirected to the Link
servlet, as shown in Figure 11.17:

e Faventes - i @, Suggenessnesv 8. Wets&eﬁalm,v
.'nglBTraekemeiel) o "} 3 - Pnge' ﬁatm-' T_Qu"" g'

|| Links Tracked Sice Fri Apr 16 12:15:33 IST 201%

http: www javaplanet com: 1 visits
hitp: W jaea simcom 2 visis
hrep: jeva sun com - 4 Ssits

Figure 11.17: Displaying the Link Serviet
Figure 11.17 displays the output after clicking the LinkTracer Serviet link.

Now, let’s discuss the concerns related to response redirection translation.

Response Redirection Translation Issues
Response redirection is a tool that intimates a user about the resource to which a response is to be redirected. It
works with any implementation of the Servlet APL. However, there is a specific bug that arises while using
relative response redirection. Consider the following command, which is used to redirect response:
reésponse.sendredirect(".;./foo/bar.hml"); : .
The preceding command works perfectly when used in some servlets but not in others The problem comes from
using the relative back . ./ to traverse back a directory. A JSP page can use this command correctly; (you have
to assume that the browser translates the URL correctly) but the JSP page can use it only if the requested URL is
combined with the correct path and ends on an appropriate resource. For instance, if
http://localhost:8080/foo/bar.html is a valid URL, then http://localhost:8080/foo/../
foo/bar.html should also be valid. However, http://localhost:8080/foo/foo/../foc/bar. html
will not reach the same resource.

#1

351

Chapter 11

This might seem an irrelevant problem. However, request dispatching that we introduce in the next section
makes it clear why this is an issue. Request dispatching allows requests to be forwarded on the server-side,
which means that the requested URL does not change, but the server-side resource that handles the request can
be changed. Relative redirections are not always safe; using . . / can be bad. The solution is to either use
absolute redirections or a complete URL, as shown by the following command:

‘response. sendRedirect{"http://Tacalhost/foos/bar, html™) ;
Alternatively, you can use an absolute URL from the root, */", of the Web application, as shown by the
following command:

response.sendRedirect("/foo/bar.htm1™); S :
The HttpServletRequest getContextPath ()} method should also be used, when you can deploy the Web
application to a non-root URL, as shown by the following command:

" response.sendRedirect{request.getContextPath()+"/foo/bar. html "

You have already studied about the HttpServletRequest object along with the use of the
getContextPath() method, earlier in this chapter.

Auto-Refresh/Wait Pages

The other useful response header technique is to send a wait page or a page that auto-refreshes to a new page
after a given time period to a user. This tactic is helpful in cases where there is a possibility of getting a response
which might take an uncentrollable time to generate or for cases where you want to ensure a brief pause in a
response. In this case, the entire mechanism involves setting the refresh response header. The header can be set
by using the following command:

response.setHeéader("Refresh"”, “time; YrRL=url"); AR o
In the preceding command, time is replaced with the amount of seconds the page should wait, and url is
replaced with the URL that the page should eventually load. For instance, if you want to load the
http://localhost/foo.html URL after waiting for 10 seconds, the header is set by using the following
command:

response.setHeader("Refresh”, ""10; \URL=http://TociThost; 8080/ Foo. html");
The technique of sending a page that auto-refreshes is very helpful because it allows a proper message to be
conveyed to clients until their requests are being processed. For example, a simple your-request-is-being-
processed-page, which automatically refreshes to display the results of the response after a few seconds, can be
displayed to the client. Alternatively, the client has to wait until a request is completely processed, before
sending back any content. The alternative approach is used in most of the cases. However, this approach
requires the client browser to wait for the response. Due to this, sometimes the client may assume that the
request may result as timed-out, and may make a time-consuming request twice.

Another practical use for a wait page is to slow down a request. This is done by a developer to get better and
more relevant information. For example, a wait page that displays either an advertisement or legal information
before redirecting a user to the desired page.

In same situations, the Refresh response header can prove to be helpful. Sometimes it can be considered as the de
facto standard; however, it is not a standard HTTP 1.1 header.

Now, Jet’s learn how to delegate a request to a resource and discuss request scopes.

Describing Request Delegation and Request Scope

Request delegation refers to the request of a single client passing through many servlets or other resources in a
Web application. The entire process is performed entirely on the server-side, unlike response redirection.
Request delegation does not require any action from a client or extra information sent between the client and the
server. Request delegation is available through the javax. servlet.RequestDispatcher object, which can be
obtained by calling any of the following methods of the ServletRequest object:

352

Working with Serviet Programming

0 getRequestDispatcher(java.lang.String path)—Returns the RequestDispatcher object for
the path provided as an argument, The path value must start from the base directory / and can direct to any
resource in a Web application.

0 getNamedDispatcher {java.lany.String name)-Returns the RequestDispatcher object for the
named servlet. The servlet-name elements of the web . xm1 file define the valid names.

The following two methods are provided by a RequestDispatcher object to include different resources and to
forward a request to a different resource:

U forward(javax.servlet.ServietReguest, Javax.servlet.ServletResponse)—Delegates a
request and response to the resource of the RequestDispatcher object. A call to the forward () method
may be used only if no content is previously sent to a client. After the completion of the processing of the
forward () method, no further data can be sent to the client.

O include(javax.servlet.ServletRequest, javax.servlet.ServletResponse)—Works similar
to the forward () method, but has some restrictions. Any number of resources can be included by a servlet
by using the include () method; however, the resource cannot set headers or commit a response.

While a request delegation is often used to break a large servlet into smaller and more relevant parts, a simple
case involves separating a common HTML header that is being shared by all the pages of a website. The
include (} method of the RequestDispacher object provides a convenient method to include the header in
any other serviet that needs the header. In the case of request delegation, any future changes to the header are
automatically reflected on all the servlets. A much more elegant solution to this problem is provided by JSPs. In
practice, a servlet request delegation is usually used to break large servlets into smaller and relevant parts.

In addition to this, simple server-side components include request delegations, which are a key part of server-
side Java implementations of popular design patterns. As far as Java Servlet and JSP are concerned, design
patterns are commenly agreed-upon methods to build Web applications that are robust in functionality and
easily maintainable.

You may already know that there are well-defined scopes for variables in Java. Local variables are declared
inside methods and are by default only available inside the scope of that method. Instance variables, declared in
a class but outside a method or Constructor, are available to all methods in a Java class. There are many other
possible scopes as well. These scopes help to keep track of objects and to allow JVM to accurately carry out
garbage-collection of the memory. Apart from the various Java variable scopes, such as local and global, the
servlets also provide some new scopes. The request scope is introduced by a request delegation.

The request scope and the other scopes are not officially marked by the Servlet specification. A set of methods
defined by the servlet specification in the javax.servlet package allow you to bind objects to and retrieve
objects from various containers (that are themselves objects). As an object bound in this manner is referenced by
the container it is bound to, the bound object is not destroyed until the reference is removed. Therefore, bound
objects are in the same scope as the container they are bound to. For example, the HttpServletRequest
object is bound to a container and includes the methods of the HttpServietRequest interface. The methods of
the HttpServletRequest object can be used to bind, access, and remove objects to and from the request scope
that is shared by all servlets to which a request is delegated. This is an important concept and can easily be
shown in the Servlet2Servlet class, created in Listing 11.11.

A request scope can be defined as a method in which an object is passed between two or more servlets with the
assurance that the object goes out of scope (that is, it will be garbage-collected) after the last servlet has
performed its task. In later chapters, more examples of this concept are provided. Let’s first create the
servlet2Servlet servlet that passes an object to another servlet, Serviet2servlet2. Listing 11.11 provides
the code for the Servlet2Servlet.java file (you can find this file on the CD in the
code\JavaEE\Chapterll\Firstapp\srcicomikogent folder):
Llstmg 11.11: Displaying the Code for the Servlet25ervlet]ava Flle
Fackagg mkmﬂxa¢ LRI IS LT IR el i
“import: java.ioi*i:

import ja@vaxaserﬂet’.;' EAET
import javax, servist, htt;: *'

353

Chapter 11

public class Serviet2servier extends Httpserviet { :
pubtic wvoid doGet(HttpServ'letRequest request, HttpServ'letResPQnse
‘respanse) . throws -TOException, Sefﬂetﬁxcepﬁon R & i
response.setContentType("text/htm1");.
string, param = requestggetmrmter("value"),
if{param = nu]'l && Iparam. equa'ls("")) {
71 request. setAttl“ibute('Valne" param),
Ui ini Reguesthispatcher, pd s
request getRequestDispatcher(” /ServletZServ1et2"}
: od, fcrward(request resperlse). o i
- return; :
e Printﬂrx ter out = rgsponse gatvm ter(),
Ut priaEin (bt)
out.printin(“<head>"); ' IERRET
©out. print'tn("«mt‘!e»s«:rv?et #1</t-=t]e:")
‘out.printin("</head>"); : R :
U7 ot print " <body>*Y : L
Jout printind” <hl>aA Form: from Ser-ﬂet #1«:/ b"a,.
~out.printin(<forms") ;.
outpry ntIn("Enter a va
Youtprintin(Meinpet name=\-"va1 ue\‘"
UL :przm:("-ﬂﬂput type—\"submt

el . pri n{" /hbdy>
R pr1nt1n("</hm3>")

Compile the ServletZServIet serviet and map it to the /Servlet2Servlet URL extension in the web . xml file
by using the followmg code sruppet
<seyviets:

.f-ﬂfservﬂgt> O R
. eserviet- mgpa‘ing> i
<$er(¢ etvnWServletZSetv

</serv1et@mpuing> PR : w3 R wEeTe e : :
Listing 11.12 shows the code for the ServletZServletZ java ﬁle (you can find thls f1le on the CD in the
codelJavaBE\Chapter1i\FirstApp\srcicom\kogent folder):

Llshng 11 12 D1splay1ng the Code for the Servlet2Servlet2.java File

Warking with Serviet Programming

else { . Sl
out.print]n("ﬂo valué passedi™); -
3} - . e
out. pr‘i intl n("</body> "y
) aut pr1nt1n(“</htm‘i>"),
Now, save the code given in Listing 1112, with the name Servlet2Servlet2.java in the
/src/com/kogent directory of the Firstapp Web application. In addition, compile the Servlet2Servliet2
servlet and map it to the /Servlet2Serviet2 URL extension in the web . xml file, as provided in the following
code snippet:
esarviets : T TERNTEI S
<Serv'let—name>5erv1etZSarv'letk/servlet name> i :
. =<servlet-class>com. kogent SewTetZServ'letk/serﬂet-c'la.ss>
¢ ¢fserviets _
“xserviet-mapping> . : o
<se.rv‘let—mwServ‘tetZServiet2</serv1et -name>-
<url- patterm/servletZServ?et2</ur'i -pattern> .
‘</serviet-nappings
Redeploy the FirstApp Web application and the application is ready for execution. Next, browse the
http://localhost:B8080/FirstApp/Servliet2serviet URL. Figure 11.18 shows the servlet response
that appears similar to a s1mple HTML form asking vou to enter a value to pass to the second servlet:

#&»[ﬂq D e CE - C i mnv Bagee e Tsske @ T

i A form from Serviet #1

sendto Sevvlet =2

Figure 11.18; Displaying the Output of the Servlet2Servlet Serviet

Type a value in the Enter a value to send Servlet#2 textbox to send to the second servlet. In our case,
we have entered the value, Pallavi. Now, click the Send to servlet #2 button. The second servlet appears,
as shown in Figure 11.1%;

! Serviet #2

Serviet =1 passed a Strmg ohiect via request scope. The vabue of the String &5 Palfavi.

Figure 11.19: Displaying Serviet 2 in Progress
The preceding example demonstrates how the value of one servlet is passed to the other servlet. After discussing
the concept of request delegation and request scope, let's now learn how to share information among servlets by
using the servlet collaboration technique.

Understanding Servlet Collaboration

Servlet sometimes cooperate with each other by sharing information. This sort of cooperation is known as servlet
collaboration. The collaborating servlets can pass the shared information between each other through method
invocations; however, to do this, each servlet is required to know about the serviets with which it is
collaborating. This adds unnecessary burden on the server. Several other techniques can be used to carry out for
servlet collaboration. Let’s discuss these techniques in the following sections. '

355

Chapter 11

Collaboration through the System Properties List

A simple way for servlets in collaboration to share information is by using Java's system-wide Properties list.
The Properties list is found in the java.lang.System class and holds standard system properties, such as
java.version and path.separator as well as application-specific properties. Servlets can use the
Properties list to hold the information they need to share. A servlet can add or change a property by using the
setProperties (} method, as shown in the following code smppet
CSystem. setPraperties().put(Ykey", "value);
The concerned serviet, or some other servlet running in the same JVM, can later get the value of the property by
calling the getProperties () method, as shown in the followmg code smppet
String value « System.getProperty("key"); - :
The property can also be removed, by calling the remove () method as shown in the folIowmg code snippet:
System.getProperties().remove{ key"); :
Generally, you should include a prefix while defining the key for a prOperty whlch contains the name of the
servlet’s package and the name of the collaboration group, for example,
com. kogent . Servlet.ShoppingCart. The Properties class is $String-based, which implies that each key
and value is supposed to be a String. However, this is not a commonly enforced limitation and can be ignored
by servlets if they want to store and retrieve non-8t ring objects. Such servlets can use the Properties list as a
hashtable at the time of storing keys and values because the Properties class extends the Hasht able class;
therefore, the Properties list can be treated as a hashtable. For example, a servlet can add or change a
property object by calling the setProperties () method, as shown in the followmg code snippet:
Systein.setProperties (y.put(keydbject, valuetbject); e
The property object is retrieved by calling the getProperties() method as shown in the following code
snippet:
Somedbject valuepbject = (SomeObject)System;getereperties().get(keyobject);
The property object is removed by calling the remove {} method, as shown in the following code snippet:
System.getPraperties() . remove(keyobject); — Sl
Due to the misuse of the Properties list, the getProperty (} , llSt () and save () methods of the
Properties class throw the ClassCastException exception and it is also assumed that each key and value
is of the String type. Due to this reason, you should use some other technique for Servlet collaboration. JVM
should look for the class files for the keyObject and valueQbject arguments in the server’s CLASSPATH.
The class files should not be looked in the default servlet directory where the servlet-class loaders load and
reload the serviets.

Servlet collaboration works correctly with the use of property lists if the servlets use the property lists to share
insensitive, non-critical, and easily replaceable information. For example, consider a set of servlets that are used
to sell pizzas and share a particular pizza on a special day of the week. To implement collaboration between the
servlets, the administrative servlet can use a property list to set a special day and the pizza to be served on that
day. The following code snippet shows the implementation of the setProperties () method to set the value
for the pizza and the special day:
Scystem setPropert1 es 6.8 put("com) Kagent:, sém ngPizza. Spec-ia’t pi zza". "Cheese
izza"
System setPrqpertiesO pu%("cnm kogem: Serw ngmzza spemaﬂ day . new oate()),
Now, every other servlet on the server is able to access the special properties and display it with the code
shown in the following code snippet:
String pizza = System.getProperty(”com. kngent;&emngﬂjzza __smcna},mzza“)
Date ‘day = . B)
gm:;s;&sm,getnopemies(};geté"tm&ngmt SeMngPuza Spenal day")~
Datesnmt -df.= Datekormat. getnateznstmce(nat Format s&osn‘)_
| .5tring today, = dﬂfnrmat(day)» s ; e
‘prowriter. printin("our pizza spec1a1 taday f -today + ..‘”) ¥siim ok p1 zza)_;
In the preceding code snippet, the System.getProperty () method is used to retrieve the value of the
com.kogent.ServingPizza.special .pizza key.

356

Working with Servlet Programming

Collaboration through a Shared Object

Sharing information through a shared object is another way for servlets to collaborate with one another. A
shared object can hold a pool of shared information and make it available to each servlet as required. In a sense,
the system Properties list is a special case example of a shared object. To manipulate an object’s data, the
shared object often incorporates some business logic or rules. By incorporating a rule that the shared object’s
data be available only through well-defined methods, the rule protects the shared object’s data. The rule helps to
protect data integrity and triggers events so that they can handle certain conditions. Moreover, various data
manipulations can be abstracted into a single method invocation. This capability is not available in the case of
the Properties list. The garbage collector is an important aspect of collaborating through a shared object. If at
any time a loaded servlet does not reference the object, then the servlet can reclaim it. Therefore, every servlet
that uses a shared object must save a reference to the object to keep the garbage collector at bay.

Let’s consider the previous example in which we used servlets to sell pizzas. Collaboration between servlets to
maintain a shared inventory of ingredients can be implemented through a shared object. For this, you first need
to create a shared PizzaInventory class. The Pizzalnventory class is defined to maintain the ingredient
count and display the count through public methods. An example of the PizzaInventory class is shown in
Listing 11.13. Notice that this class is a singleton (a class that has just one instance). This makes it easy for every
servlet sharing the class to maintain a reference to the same instance.

Now, let's discuss the shared inventory class. Listing 11.13 shows the code for Pizzalnventory.java (you
can find this file on the CD in the code\JavaEE\Chapterl1\FirstApp\szrc\com\kogent folder):

Listing 11.13: Displaying the Code for the Plzza]nventory]ava F:le
package gom Lkogent;:.

‘beans=- V'tci&w,

n/ can ‘make:: tha ﬁ’izza
/f ccm'ld arder morn fagndwﬁts N
retzsrn fa"fse. // carmot make the |

Save the PizzaInventory.java file in the srcicom\kogent directory of the FirstApp Web application.
Pizzalnventory maintains an inventory count for four pizza ingredients: cheese, wheat £lour, beans, and
capsicum. The PizzaInventory class holds the count of the ingredients with the private instance variables.
Information of the count should be kept in an external database to maintain a record of the quantity of

357

Chapter 11

ingredients used to produce pizzas. Each ingredient’s inventory count is increased by using the addCheese (),
addWheatflour (), addBeans (), and addCapsicum{) methods. These methods may be called from a servlet
accessed by the ingredient prepared in the day.

In the makePizza () method, the value of the inventory counts are decreased together. The role of this method
is to check whether or not there are enough ingredients to make a full pizza. If there is, then the method
decreases the ingredient count and returns true. However, if the ingredients are insufficient, then the
makePizza{) method returns false (in an improved version, the method may choose to order more
ingredients). The makePizza () method may be called by a servlet selling pizzas over the Internet, and perhaps
also by a servlet communicating with the check-out cash register. Remember that, similar to all the other non-
servlet-class files, the class file for PizzaInventory is placed somewhere in the server’s CLASSPATH (such as
server_root/classes). Listing 11.14 shows you how a servlet adds ingredients to the inventory.

Let's now create a serviet to add some ingredients to a shared inventory. Listing 11.14 shows the code for the
PizzalnventoryProducer.java file (you can find this file on the CD in the
code\JavaEE\Chapterll\FirstApp\srcicom\kogent folder):

Llstmg 11.14: Displaying the Code for the P1zzalnventoryProducer java File
-package -com:kageht; B S i
import java.io,*; .
import java.util.*
import - Javax.servle
Jimport’ ﬁvaagmiﬁ

Save the PizzaInventoryProducer.java file in the src\com\kogent directory of the Firstapp Web
application and compile the PizzaInventory and PizzaInventoryProducer servlets. The following code
snippet is used to map the PizzaInventoryProducer serviet to the /PizzaInventoryProducer by using
the <uri-pattern> element in the web . xm1 file:

358

Working with Servlet Programming

<serv1 at> . .

s ' —pat’tgrﬁs»/?;zzaInventoryPraducer(!‘1 patterqb S R : :
dsef‘v'let -“mapping> - [. : : e R e ,L_:;! i
Create a new Firsthpp.war file and redeploy the FlrstApp Web apphcatlon Now, browse the

http://localhost:8080/FirstApp/PizzalnventoryProducer URL to see the output.

A random amount of each ingredient (somewhere between zero to nine servings} is produced and added to the
inventory, whenever the PizzaInventoryProducer servlet is accessed. Figure 11.20 shows the result of
executing the PizzaInventoryProducer servlet:

F b g vie P Tech bep
g Favorites wzww
. 8 Prra ety Produces

B v Y ¢ LY omm v Pagevy Seictyw Tooh~ @+ 7

Added ingredients:

cheeze: %

1 tear
capsiTur: £ §

Figure 11.20: Displaying the Output of the PizzainventoryProducer Serviet

The PizzaInventoryProducer servlet plays the important role of maintaining a reference to the shared
PizzaInventory instance. This implies that the PizzaInventory instance cannot be reclaimed by the
garbage collector until the servlet is loaded. The code for the PizzaInventoryConsumer.java file is
provided on the CD.

Now, let’s create a servlet that calls the makePizza {} method, informing the inventory that it wants to make a
pizza, The PizzalnventoryConsumerjava file provides the code for the servlet. Save the
PizzalnventoryConsumer.java file in the src\com\kogent directory of the Firstapp Web application.
Listing 11.15 shows the code for the PizzalnventoryConsumer.java file (you can find this file on the CD in
the code\JavaEE\Chapterl1\FirstApp\srcicomi\kogent folder):

Listing 11 15: Dlsplaymg the Code for the PizzalnventoryConsumer.java File

359

Chapter 11

N prowriter.printin(”Looks like you’re gonna starve.”);
prowriter.printl n("</BIG></BODY></HTML>")

}) . : I .
The PizzalnventoryConsumer servlet does not need to decrease the ingredients count by itself. It maintains a
reference to the PizzaInventory instance. This implies that the PizzaInventory instance can be referenced
even if the PizzaInventoryProducer servlet is unloaded. Compile the preceding servlet and redeploy the
FirstApp Web application. Now, browse the http://localhost:8080/FirstApp
/PizzalnventoryConsumer URL to see the output. Figure 11.21 shows the output, which is displayed
when the PizzalnventoryConsumer servlet is executed:

g thy
% iecahest

g Favorites | i @ Seggrsted Sites + 47 Wab Skice Gallery v

8 Pizzi bventor; Comsumer SRy v B - Lt eR o Pagew Seieyv Toohe e U

T We're low on ingredients.
Looks like vou're gonna starve

Figure 11.21: Displaying the Output of the PizzalnventoryConsumer Serviet

You can also make a servlet act as a shared object. There is an added advantage of using a shared servlet. Sharing
allows a servlet to maintain its state by using its init () and destroy () methods to load and save its state. In
addition, each time a shared serviet is accessed, the servlet can print its current state. Let's re-create the
Pizzalnventory servlet to implement the concept of sharing a servlet.

Listing 11.16 shows the code for the re-created PizzalInventoryServiet . java file (you can find this file on
the CD in the code\JavaEE\Chapter11\FirstApp'srcicom\ kogent folder):
Listing 11.16: Displaying the Code for the PizzalnventoryServlet java File
package ecom.kogent; : o o
import java.io.*;
import javax.servlet.*; .
imgort Javax.servlet http.*; L
public class Pizzainventoryservlet i xtends HittpServiet {

// How many "servings" of each item do we have?
private int cheese = 0; ' - o
private 1int wheatflour = 0;
private int beans = 0;) . Lo .
private int capsicum = 0;) .
// Add to the inventory as more servings are prepared.
public void addCheese(int added) { cheese += added; }
public void addwheatfiour(int added) { whaatflour += added; }
public void addBeans(int added) { beans += added; }. .. :
public void addCapsicum(int added) { capsicom += added; T}
// called when it is time to make a pizza. - o
// Returns true if there are spough ingredients to make the pizza,
// false if not. Decrements the ingredient Lount ‘when: there are enough.
synchronized public boolean makePizza():{ . GimL i T
S [/ Pizza requires one serving of each ftem -
if (cheese > 0. &% wheatflour > 0.&& beans > 0 && capsicum > 0) {
- cheese~-; wheatfloyr-=; beans-~; capsicum--;
return true; : // <an make . the pizza.

else. { et e T e B
// Could order more ingredients -
- return false; .// cannot make the pizza

} . ' e
 // Display the current inventory count.. LA
public void ‘doGer(HttpservietReguest req, Attpserv] etResponse res)
_-‘throws servletException, IOException { & . - L S
. res.setContentType("text/htmi™)i . - o -
PrintWriter prowriter = res.getwriter(); = - .
Cprmwrd ter printn(’ <HTML> <HEAD><TITLE>Clfrent &

360

Working with Serviet Programming

) . Ingredients</TITLE></HEAD>");

prawriter.printin("<BoDY>");

prnwr.i't‘er.pr1nt1n(“<TABLE BORDER=1>") ; '

prowriter.printin(”)<TR><TH COLSPAN= 2> Current ingredients:</TH>
</TR>"Y;

_prnwriter.pr1n;1n(;TR><TD>Cheese.</TD><TD> + cheese + "</TD>
</TR>"

prnwriter.pr!nt]n(“<TR><TD>wheatf10ur </TD><TD>" + wheatflour +

: </TD></TR>“) H

proawriter. printIn("<TR><TD>Beans: <fTb><TD>" + beans + "</TD></TR>");

prawriter.printin(® <TR><TD>C3PS'lcum </TO><TD>" + capsicum +

M fToe</TR>"Y
prowriter. printtn("</TABLE>"Y
prnwriter.pr1nt1n("</800¥></HTML>"),

// Load the stored inventory count

public void init(ServietConfig config) throws servletException {
super.init{config);
1oadstate(),

}
public vo1d loadstate(} £
: // Try to load the. counts
F1leInputStream f11e = nu11

%e = new F11eInput5tream(P1zzaInventoryServ?et state"),

: DataInputStream in = new Dataxnputstream(f11e),
- cheese = in.readint();

wheatflour = in.readint(}; .

beans = in.readInt(});

capsicum = in.readInt(}; -

file.close();

return;

1 .
catch (IOExcept1on=1ggored) {
Prop

1
) pub11c vo%d destro ki
saveStateO ;-

) .
public vofd savestate() {0 '
 // Try té save the. counts
"'F1Teoutputstream Fite = null;

o ¥e new F11eoutput5tream(“?1zzaInventoryServTet state");
) Dataﬁutputstraam prawriter = new DataOutputSfream(f1le),
© prowriter wiitelnt(thease);)
proweiter. writeInt(wheatflour); -
prowriter.writeInt(beans); .
" prawriter. w?%teznt{capsicum).- SRR . -
return;-. ..o : TE e Tt o

catch (IOException 1gnored) {
,// Problem dur1ng write

ik
~f1na11y {
try {

_ 1f (File = nu]?) f11e c1ase(),

<}
catch (IOExcept1on 1gnored) i¥
1

361

Chapter 11

Now, save the PizzaInventoryServlet.java file in the src\com\kogent directory of the Firscapp Web
application. Then, redeploy the FirstApp Web application and view the output by accessing the
http://localhost:8080/FirstAppfPizzaInventoryServlet URL. The PizzaInventoryServlet
servlet is no longer a singleton but a normal HI'TP servlet, which defines an init () method that loads its state
as well as a destroy() method that saves its state. Figure 11.22 shows the output of the
PizzaInventoryServlet servlet

£ bitp. localhost:

D ir e I
s Fevorites | % @ Suggected Sites v 2 : Wb Slice Gabery »
’ Cumntlng:edmm o oY 5~ “ iD #m - Pagew Sofetyv Tookv kv

Current ingredients:

Cheese 0
Wheatflour o
Bsa}:s 0
Capsicurn: o

Figure 11.22: Displaying the Output from PizzalnventoryServlet, Showing its State

Remember that even as a servlet, the PizzalnventoryServiet.class file should remain in the server's
standard CLASSFATH. This is required to keep the PizzaInventoryServlet servlet from being reloaded.
Both the PizzaInventoryProducer and PizzalnventoryConsumer classes can get a reference to the
PizzalInventoryServlet servlet. The following code . snippet shows how to reuse the
PizzaInventcryServlet serviet

il Get the inventory Serviet instanc
. . }_-_if"*ﬁﬁvﬁﬂfory' iy ﬂu'rl) { I o :
nventory = (Pizzalnventoryseryiest)
S e seryletieils; getservler (e

Lo ey, getservietContaxt())
/7 If the Toad was-unsuccessful

In the preceding code snippet, instead of calling PizzaInventory.getInstance
consumer classes can ask the PizzaInventoryServlet instance from the server.,

() method, the producer and

Collaboration through Inheritance

Collaborating through inheritance is perhaps the easiest technique of servlet collaboration. In the inheritance
technique, each servlet requiring cotlaboration can extend the same class and opt for inheriting the same shared
information. This simplifies the code of the collaborating servlets and allows only the proper subclasses to access
the shared information. Moreover, the common superclass can hold a reference to the shared information or hold
the shared information itself.

In the following sections, you learn to collaborate with servlets through inheritance in two ways, by inheriting a
shared reference and by inheriting the shared information.

Inheriting a Shared Reference

In case of inheriting a shared reference, a common superclass can hold any number of references to shared
business objects, which are easily made available to its subclasses. Such a superclass is shown in Listing 11.17,
which we can use for our PizzaInventory example.

Listing 11,17 shows the code for PizzaInventorySuperclass.java (you can find this file on the CD in the
codevJavaEE\Chapterll\FirstApp\src\com\kogent folder):

362

Working with Serviet Programming

Listing 11.17: Displaying the Code for the P127alnventory5upercla55 java File

package .com.kogent;-
import: Javax serviet.¥;
import javax.serviet. http o
import - com.kogent.* ;
public ¢lass: P1zzaInventorysuperc1ass extends Htipserviet {
protected static Pizzalnventory inventory = pizzalnventory.getinstance();

In Listing 11.17, the PlzzaInventorySuperc lass servlet creates a new PizzalInventory instance. Now,
save the PizzaInventorySuperclass.java file in the src\com\kogent directory of the FirstaApp Web
application. The PizzaInventoryProducer and PizzalnventcryConsumer classes can now extend the
PizzaInventorySuperclass class and inherit a reference to the PizzaInventory instance. To understand
how the PizzalInventoryConsumer class can extend and inherit the reference to the Pizzalnventory
instance, the code for the PizzaInventoryConsumer servlet is revised in Listing 11.18.

Listing 11.18 shows the revised code for PizzaInventoryConsumer. java (you can find this file on the CD in
the code\JavaEE\Chapterl1\FirstApp\srcicom\kogent folder):

Listing 11.18: Displaying the Code for the PizzalnventoryConsumer.java File

package com.kogent ;
mport java.io.*;
import javax. serv?et._
import javax.serviet, http :
puh]'fc class Pizzaxnventorycansumer extends P1zzaInventorySuperc1ass i
pub?ac Void doGet(HttpServietRequest req, ﬂttpServ1etResp6nSe res)
e thrcw; secvietException, Z0Exceprion { -
o res. SetcontentType("text/htm'l"), ,
L PrintWriter prowriter = Tres. getwﬂter(),
";pnmmterpmnﬂnf<mﬂuﬂ), - i
_;prnwrlter prwn}1'"<H£Aop<TITLE>P1zza Inventary CGnsumer

Sprintinl<BobYs><BIG>"Y;
imakePizza(d). i danl
'n_‘Yo¥r=puzza'w 1 be reagy “n‘a

'redaents
"}§ g
4 gonna’ 5tarve.=,_)

The Pizzalnventory class does not have to be a singleton anymore, The reason is that subclasses naturally
inherit the same instance. The class file for the PizzalInventorySuperclass class should be put in the
server’s CLASSPATH. This is required to keep the PizzaInventorySuperclass class from being refoaded.

Inheriting Shared Information
Apart from allowing servlets to hold shared references, you can also inherit the shared information. For this, you
can use a common superclass to hold the shared information by itself or optionally make it available through
inherited business logic methods. The following code snippet shows how the PizzaInventorySuperclass
class holds its own shared information:

public class P1zza1nventorysuperc1ass extends
Httpserv1at {

// vow -many “servings” of each item do we have? T

- private static int:cheese = 05~ - : . R N T e
private static.int wheatflour = 0;- - B It AL NI
private stati¢ int beans = 0; ’ Ce s T G
private static int:capsicum = 0}
// Add to the inventory: as more servings are prepared.’
protected static void addcheese(int added) { cheese += added; } ‘
protected static void addwheatflour(int added) { wheatflour 1= added; }
protected static void addBeans(int added) { beans += added; }

363

Chapter 11

[/ called when it is tisé to make a pizza. N o)
w o A4 ReXUFnS true it thare are -ehough Jngredients to make the pizza.
Ui /f false i€ notr. Deprements the ingredient count when ‘there dre enough.
“oosynchiondzed static protectéd boolean makePizza(y - { . L

protected static void addCapsicum{int added) { capsicum += added; } .

S.etel

i (. The rest matches PizzaInventoryserviet. .. - ST T

Now, let's discuss the difference between the PizzalInventorySuperclass and PizzaInventoryServlet
servlets to analyze what changes are required to inherit the shared information in a servlet, There are only two
differences between the two servlets, which are as follows:

O All the variables and methods of the PizzaInventorySuperclass servlet are static, which is not the case
with the PizzaInventoryServiet class. This guarantees that only one inventory is maintained for all
the subclasses.

O All the methods of the PizzalnventorySuperclass servlet are protected. This implies that the methods
will be available only to the subclasses.

O This completes the discussion about servlet collaboration. Let's move to the next section and discuss
another important mechanism with respect to the Java Servlets termed as session tracking.

Understanding Session Tracking

Before you learn about session tracking, you should understand what does a session refers to, with respect to a
Java Servlet or a Web application. A session can be defined as a collection of HTTP requests shared between a
client and Web server over a period of time. While creating a session, you require setting its lifetime, which is set
to thirty minutes by default. After the set lifetime expires, the session is destroyed and all its resources are
returned back to the servlet engine. Session tracking mechanism tracks the details of a user session.

Session tracking is a process of gathering the user information from Web pages, which can be used in an
application. Let’s cite an example; a shopping cart application can be taken as the most common example of
session tracking. In the shopping cart application, a client accesses the server several times from the same
browser and visits several Web pages. After browsing the Web pages, the client decides to purchase some of the
items offered by the Web site for sale and clicks the BUY ITEM button. In this case, if a stateless server-side
object serves each transaction, and the client’s side does not provide any identification on each request; it would
not be possible to maintain a filled shopping cart over several HTTP requests from the client. If the user visits a
Web page multiple times and selects different items to be added to the shopping cart in each visit, the stateless
nature of HI'TP might not relate each visit to the same session. Therefore, even writing a stateless transaction
data to persistent storage would not be a solution in this regard.

Therefore, skssion tracking involves identifying the user sessions by related ID numbers and tying the requests
to their sessions by using the said ID number. Cookies and URL, rewriting are the typical mechanisms for session
tracking. Depending upon the Servlet specification, session tracking is implemented through HTTP session
objects by the servlet container in the application server. These HTTP session objects are instances of a class and
implement the javax.servlet.http.HttpSession interface. The getSession{} method of the
HttpSession interface is used to create the HTTP session object and the stateful client interaction.

The question may arise about the scope of the HTTP session object. Will it be limited to single request or
multiple requests or across users? The scope of the HTTP session object is limited to the single client, It is
important to note that you cannot use session objects to share the data between different applications and
different clients of the same application. There is only one HTTP session object for each client in each
application.

To track the session details for a specific user to maintain the session, you need to implement a mechanism in
your Web application. You can implement the following session tracking mechanisms to track the session
details: .

0 Cookies

O Hidden form fields

364

Working with Servlet Programming

0O URL rewriting
O Secure Socket Laver (S5L) sessions
Let's discuss these in detail.

Cookiles

While working with session tracking, numerous approaches have been adapted to add a degree of statefulness to
the HTTP protocol. Among these approaches, the most widely accepted one is the use of cookies. A cookie is
used to transmit an identifier between a server and a client. The transmitting of an identifier is in conjunction
with stateful servlets, which can maintain session objects. These session objects are simply the dictionaries that
store values (Java objects) together with their associated keys (Java Strings). The following steps describe the
usage of cookies:

O After creating a session, the server (container) sends a cookie (as a response from stateful servlet) with a
session identifier back to the client, Some other useful information, such as username and password, is also
sent with the cookie (all less than 4 KB). The cookie, named JSESSIONTD, is sent by the container as a
response in the HTTP response header.

@ Then, whenever any subsequent request is received from the same Web client session (assuming the client
supports cookies), the cookie is sent back by the client to the server as part of the request. In this case, the
cookie value is used by the server to look for the session state information to be passed to the servlet.

O Finally, with subsequent responses, the container sends the updated cookie back to the client.

As the container handles the process of sending a cookie, the servlet code is not required while using cookies. A

Web browser automatically handles the process of sending cookies back to the server unless the user disables

cookies.

The cookie is used by the container to maintain a session. Cookies can be retrieved by a servlet by using the
getCookies () method of the KttpServletRequest object. The cookie attributes can be examined by the
servlet using the accessor methods of the javax.servlet.http. Cookie objects.

The servlet container sends a cookie to the client. Upon each HTTP request, the cookie is returned back to the
server. This way, the session id indicated by the cookie is associated with the request. You should note that you
can use HTTP cookies to store information about a session and for each subsequent connection the current
session can be looked up and then information about that session is exiracted from a location on the server
machine. For example, in the following code snippet, the code to retrieve the session information is provided
that can be implemented in a servlet:

: 5tring sesib=: makeuh'iquestrmg(}. e
Hashtable sesInfo.=’ tahl

response addcaék’ie(sescifoﬁe),- i G R o i
The preceding code snippet requests the server, Wthh uses the hashtab hash tab]e to associate a session ID of
the JSESSTIONID cookie with the sesInfo hash table of data associated with that particular session. A cookie is
the most widely used approach for session handling. The servlet's session tracking API handles sessions and
performs the following tasks:

O Extracting the cookie that stores other cookie’s session identifier

O Setting an appropriate expiration time for the cookie

O Associating hash tables with each request

O Generating a unique session identifier

Now, let's discuss the Cookies API as it would help you to understand about the classes and interfaces used for
session tracking,.

In Java Servlet APT, Cookieis a class of the javax.servlet.http package, which abstracts the notion of a
cookie. You can implement session tracking using cookies with the help of the addCookie() and

365

Chapter 11

getCookies () methods. These methods are provided by the javax.servlec.http .HttpServletReguest
and javax.servlet.ht tp.HttpServletResponse interfaces and are used to add cookies to HTTP
responses and to retrieve the cookies from HTTP requests, respectively. A cookie is abstracted by the Cookie
class. The following code snippet shows a constructor that instantiates a cookie instance with the given name
and value:

public Cookie(String name, String value) : U .
The Cookie class provides various methods, such as getvalue{) and setvalue (), which simplify working
with cookies. For all the cookie parameters, the Cockie class provides getter and setter methods. The
following code snippet shows the syntax of some of the methods of the Cookie class:

spublic string getvalue() PRI :

public void setvalue(String newvalue) .
The getter and setter methods can be used to access or set the value of a cookie, Similarly, there exist other
metheds that can be used to access or change other parameters, such as path and header of a cookie. The
following code snippet shows the syntax of the addCockie() method provided by the
javax.gservlet.http.HttpServletResponse interface to set cookies:

public void addcookie(Cookie ‘cookie). .- 3 Liewlgidl o T e .
To set multiple cookies, you can call this method as many times as you want. The following code snippet shows
the syntax of the getCookies !} method provided by the javax. servlet. http.HttpServletRequest
interface to extract all cookies contained in the HTTP request:

pubTic Cookie[] getCookies(y =i+ R S e
Now, you can create your servlet to track the activities of a user using cookies by providing the code for the
following actions:

O Check if there is a cookie contained in the incoming request
O Create a cookie and send it with the response, if there is no cookie in the incoming request
O Display the value of the cookies, if there is a cookie in the incoming request

Let’s create a new Web application, HandleSession, to implement session tracking using cookies. This
application follows the same directory structure as shown in the previous sections of the chapter for the
FirstApp application. Let's now create the CookieServlet servlet (in the HandleSession application) to show
how to work with a cookie. Listing 11.19 shows the code of the CookieServlet. Jjava file (you can find this
file on the CD in the code\JavaEE\Chapterll\HandleSession\src \com\kogent folder):

Listing 11.19: Showing the Source Code of the CookieServlet Serviet

package. com, kogent;
L dmport: Javauie.k; o
impar g util,Random; . il
mpart javax.serviet.htepir; oo T
IMpore javax.servlet. Servletexception; o oo = ‘
public class cookieserviet extends Mttpservier { 7 0o T et

protacted void docet(HttpServietRequest request, HitpservietResponse -
responise) thraws Servletéxception, IOException { = o
- cookief] doki = request.getcookiesCy: '

ot Cotkie tokenCookie = mutly Lo e

for(int i=0; i<coki.length; F44) {

i (cokili).getName() .equals("token™)) [

S e itokencoekie = gokifitiooao oo
‘break; o D i

} it : :

3
response.setContentType(“text/htmI™y; - 170
Pr‘intﬂrite“r-pf&mriten?é;:f&sponse;‘gewﬁterﬁ T L S B
prowriter.printin("<html><head><title-Extracting the token
., cookiec/titlerc/head><hody™y; 0 R
prowei ter printtn("stylea\" font- Famt Ty: arial; font-sizeri2pt\"s" Yy
o STring resgtParam =:request.getParameter(resetParam™); -

366

Warking with Serviet Programmlng

1f(tokencockse==nu11 1. (resetParam 1= null &&

resatbaram. eqtza'ls("yes“))) { s

-Random. rnd = fiew. Random() ;.
- long: cocdue'rd = rnd. nextumg(), : ‘

prawriter ;printin("<p>wWelcome. A new . turkeﬂ "o coﬁk‘i‘exd +‘ "q

now: estabhsheck/p"),_ . R VR L L

" rokenCookie = new Cookie(token™, .-

s Lofg. tostrmg(cookweﬁ)),

tokenC@ok’le setcommentc A cooiue named token to 1dent1ty

Touser™:

‘tokencookis ./ setMaxage(~1) & '
-tokenCookie. setPath("fﬂanmesesswn/(ﬂookmﬁerﬂ et™);

. résponse, addcnuhe(tokentmkig}, ,

else s

K : i : -
prnwr‘xter prmﬂn("ﬂekm hack Lo Your: t.o&én is "+

) ‘ tekencaokie getvaiuei} + ".«/p>?3‘ :

trmg requestukt_same s request getﬂequestuah{) mﬁngf}.
String requestURLNew = request. getkeguestunL(} F “?resetParam=yes",
prawritér.pri nt'ln(”q»c'hck e + raquestuki:swe "> here
again’to continue: hrwsiﬂg with ‘the ¥ 5§me .
. identityue/p>"Yr o
prnwr"tter pmntTn{'Whémise,”ehck <& href s=l = f‘eﬁnEStURLNew +
"> here</3> to start browsing mth a new 1dem;1tg. </p=")3
pri t'ln(”-:/hudy:v(/htm’f)"), o :
prnwr’ er. 'ciase{ﬁ,

In Listing 11.19, the CockieServiet servlet first retrieves all the cookies that are contained in the request
object. In case the cookies are present, the CookieServlet servlet locates the cookie named token. If the
servlet does not find a cookie with the name token, then the Web container, on the CookieServlet servlet
request, creates a cookie called token and adds it to the response. A random number for the cookie is created by
the servlet. The servlet creates a cookle w1th the help of the parameters, as shown in the following code snippet:
Nate . token Lo .
value A random numbe L
: comment] :
Max-Age : _—1‘ (Thq
‘Browsér éxitsy.
Pa‘th 1 /Handlesession/Cookiesery’ _
. . 'cookie ‘to. only.those reguests.: :
“http://lecalhost: 8080 /Hand edession/c kweServTet

If you are deploying this application on a remote machine (server) and accessing 1t from another machine
(client), you need to set the domain name to be that of the server name; by default, it is 1ocalhost. Compile the
CookieServlet. java file using the following command:

javac -d C:\JavagE\Chapterll\HandleSession\WEB-INF\classes Cookigservietr.java
The execution of the preceding command would compile the CookieServiet serviet and store the .class file
along with package directory under the WEB-INF\classes directory of the HandleSession application.

Now, let’s create the web. xm1 file to configure and map the CookieServlet servlet to the /CookieServlet
url pattern, Listing 11.20 shows the code of the web.xml file (you can find this file on the CD in the
code\JavaEE\Chapterll\HandleSession\WEB-INF folder):

Listing 11.20: Configuring the CockieServlet Servlet

<?xml version="1.0" encoding="uTF-8§"7>
«web-app version="2.5" xmlns="http://Java.sun. com/xm‘t/ns/;avae-e ‘ .
xmlns i xsi="http://vww. w3 . org/2001/XMLSchema-instance” A R R LAt S bR AR
x$1:schematocation="http://java.sun.com/xml /ns/;avaee
http://java.san; com/xm'l/ns/;avaee/web app_,z 5 xsd“
<serviets . :

<serviet- name>{:ook1 eserv"[et</ ser\ﬂ at-name>

367

Chapter 11

<servlet-class>cam.kogent.Cookieservlet</serviet-classs
</serviets - S L
<serviet-mapping> -
<serviet-name>Cookieservlete/serviet-names
<ur'!—pat1:em>;’.cenkieser'vlet</ur1'-pat_tern'>
</serviet-mappin
</web-apps : : : R S
Save the code of Listing 11.20 as the web . xm1 file under the WEB-INF directory of the Handlesession Web
application. Now, package the Web application into HandleSessicn. war, as discussed in the previous
sections of the chapter, and deploy it on the Glassfish server. Now, run the servlet in a browser by browsing the
http://localhost :8080/HandleSession/CookieServiet URL. Figure 11.23 displays the output of
CookieServlet.java, showing the new token value for the newly created cookie named foken:
: e ?wﬁwi” imw 7 T
[EF il somen

W Feortes 05 8 SuggedtedSie - 3 Web Skice Galbery ~

8 Ertnchag the taben eogtie e L3 8w - e Sefety v Tools+ v "

|| Welcome A new token 20154219665%0045804is now estabhshed
:' Click here again o continue browsing with the same 1genily

[} Gtherwise chek zorg 1o stan browsing wth 2 new idenity

Figure 11.23: Displaying the Output of CookieServlet Serviet
In Figure 11.23, there are two hyperlinks. Click the first hyperlink to browse through the same identity of the
cookie. However, to browse with the new identity, click the second hyperlink. When you click the second
hyperlink, a new identity is crealed, with the new cookie value and it is displayed on the browser. After clicking
the second hyperlink, the reset Param parameter is set to ves, as shown in the address bar in Figure 11,24

B Extuacting the token zcokia Tk - B v v Bege fwfeye Toonv @

“Meicome A new token 5121535680244 0F292Gis now estabhened

| Chek betg againtg continue browsing with the same idemiy

h bl
i

B W

Othenwise click bgee 1o stan browsng with a new ety

Figure 11.24: Browsing CookieServiet with New Token Value

Figure 11.24 displays the new token value. Now, to continue with the same token value, as shown in Figurc
11.24, dlick the first hyperlink. After clicking the first hyperlink, the same request URL is retrieved and the
browser displays the Welcome back message, as shown in Figure 11.25:

g Favoites (L @ Swggerted Sites - £ Web Sice Gabery ~
2 Enva-tingthe token cookie B3 v Y em v Bege~ Sy Tocke @

\velcome Back Your token is 5124 530680244952620
Chek bere agam @ conlimie b owsing with *he same identity

Otherwise click 7iete 19 Star Drowsing with 4 new sdentrty

Figure 11.25: Browsing CookieServiet with the Same Identity

After discussing how to use cookies, let’s now discuss another approach used for session tracking, the hidden
form fields.

Hidden Form Fields

The hidden form fields are the fields in a Hypertext Markup Language (HTML) or JavaServer Pages (JSP) form
that are not shown to the user and used to store information about a session, You can use the following syntax to
use hidden form fields in an HTML page:

368

Working with Servlet Programming

<INPUT TYPE="HIDDEN" NAME="session" VALUE=",.."> :
In the preceding syntax, the hidden value is assigned to the type attrlbute, which implies that the input field is
a hidden form field. However, using hidden form fields has a major disadvantage, that is, hidden form fields
only work when every page is dynamically generated by a form submission. Therefore, hidden form fields
cannot support general session tracking and can only support tracking within a specific series of operations.

URL Rewriting

The mechanism of URL rewriting is similar to that of cookies. The URL rewriting mechanism uses the
encodeURL{) method of the response object to encode the session ID into the URL path of a request. The
following code snippet shows an example of URL rewriting in which the name of the path parameter is
jsessionid:
http://host: port/myapp/index.html?isessionid=6789

The server uses the value of the rewritten URL to find the session state information, and to pass the information
to the servlet. This is similar to the functionality of cookies. Although, cookies are typically enabled; however, to
ensure session tracking using URL rewriting, the encodeURL () method is used in the servlets. In addition, the
encodeRedirectURL () method is used in servlets to redirect to a resource.

According to the Servlet specification, if cookies are enabled, then any call to the encodeURL() and
encodeRedirectURL (} methods does not result in any action. In case the cookies are disabled, the servlet can
call the encodeURL{) method of the response object to append a session ID to the URL path for each request.
Alternatively, the encodeRedirectURL () method is used to redirect a Web page to a resource. As a result,
URL rewriting helps in associating the request with the session. URL rewriting is the most commonly used
mechanism for session tracking in cases when clients do not accept cookies.

Instead of embedding session information within the forms by using the hidden form fields, URL rewriting

stores session details as a part of the URL itself. The following code snippet shows various ways in which the

information for a servlet can be requested by using URL rewriting:
[11 . :hitp://www: acknowledge co,uk/Serviet/search.

[2] .. http://wew.acknowledge: “uk/ Tet/sear '
[3] - http://wew.acknowledge.co.uk/Serviet/search?sesiD=23434abc

In [1], URL rewriting has not been done rather the URL requests for the search servlet mapped to /search in
web.xml. In [2], URL has been rewritten at the server to add extra path information. This extra information is
embedded in the pages returhed to the client. The following code snippet shows how to retrieve the extra path
information, provided in [2]:

pub11c vo1d doGet(HttpservietReqaest request HttpServietResponse response) {

Stra nq sesID = r‘equest getPathmﬁJ() // r'eturn 2343abc me IZ}

} : s
The extra path information works for both the GET and the POST methods in forms and outside the forms with
static links. While using technique [3], you can simply rewrite the URL with parameter information, as shown in
the following code snippet:

reguest.getParametervalne("sesin"); : : I
Similar to hidden form fields, URL rewriting provides a means to 1mplement anonymous session trackmg URL
rewriting is not limited to forms only. URLs can also be rewritten in static documents to contain the required
session information. However, URL rewriting suffers from a disadvantage that the URLs must be dynamically
generated and most importantly, the chain of HTML page generation cannot be broken. Therefore, URL
rewriting is a tedious and error-prone process.
The mechanism of URL rewriting can be better understood by creating a servlet. Let’s create the TokenServlet
servlet, which performs the following tasks:
0 Checks whether or not the client sends a token with its request
O Creates a new token, if no token has been sent by the client
In addition, the TokenServlet servlet provides two hyperlinks —one that includes the token and other does
not.

369

Chapter 11

Listing 11.21 shows the code of the TokenServlet.java file (you can find this file on the CD in the
codel\JavaEE\Chapterll\HandleSession\srcicom\kogent folder):

Listing 11.21: Implementing the URL Rewntmg Mechamsm

package com, kogent; :
‘mpbr-i:]éva Fo #y oo
import’ Java utﬂ Random;
import javax.serviet hvtp.*;
import javax.serviet, sew%ezsxception, i S
pubiic Class’ “TokénServlet extends Httpsarv]et i :
. protected waid doGet(ﬂttpServ‘fetaequeﬁt request Httpse‘rv’letaesponse‘_'
~~~~~ ‘iiresponse) throws: Servletﬁxeeﬁm oR'; "IOEXCeption {
. -String tokensID = request. get?arameter(“tekeas )
response.setContentYype(Mtext/htmi™); . - Gl
" PrintWriter prowriter = response.getWriter():: A -
phiwriter) bﬁnt‘in('%htmkhﬁad}cnﬂe>Tokens<fﬂf}’ o /heads<body™) ;- -
Lol prawtiter: pr’intinf"styfea\"fcnt»fam3y ver-dama,ﬁ! ; S EREE
i (tokensID==mui1) { .
Random rnd = new Raadom

Save the code of Listing 11.21 as the TokenServlet.java file in the sro\com\kogent directory of the
HandleSession Web application. When the here hyperlink is clicked in the TokenServlet servlet, the URL
path is retrieved using the getRequestURL() method and the URL is rewritten with the parameter
information. Compile the TokenServlet servlet and configure it in the web. xm1 file, created in Listing 11.20
for the HandleSession Web application. The following code snippet shows how to configure and map the
TokenServlet servlet to the /TokenServlet url pattem

zwi

T Ry
it *“f-cmv%t&ﬁ“afné“#ﬁéﬁsemenimw}et»mes

You can run the TokenServlet servlet only after packagmg the HandleSeSSJ.on Web apphcahon in the
HandleSession.war file. Then, you need to redeploy the Web application on the Glassfish server and
navigate the http://localhost:8080/HandleSession/TokenServlet URL. After navigating this URL,
you can notice that the query parameter, tokens, is not included in the initial request. The servlet not only
creates a new token but also generates two links. A query string is included in one link, which is passed as a
query parameter in the request. Therefore, the servlet can recognize the user from this parameter and display the
Welcome back message. This allows the user to continue browsing with the same identity. Another link, that
does not include the query parameter, is also generated by the servlet. This link allows the user to continue

370



Working with Servlet Programming

browsing with a new identity, every time the link is clicked. Figure 11.26 shows the output of the
TokenServlet.java servlet when it isexecuted for the first time:

2 Tokens T Zp e B -t e v Bagew efenv Tgokw @

wielcome. A new token 112095867202592386 1§ now estabished
Chick he: again te Cantrude brawsng with the same idertity

Chek ferz to continue brawsing with a new identity.

Figure 11.26: Displaying the Output of TokenServiet Serviet

After clicking the first link shown in Figure 11.26, the address bar of the browser (Figure 11.27) shows rewritten
URL including the tokens parameter in the request. The tokens parameter added in the URL contains the
new token identity based on the user’s requests. Figure 11.27 shows the output when the first link is clicked:

i Favorites | g3 ) Seggedted SHes = B Web Sice Gaflery ~

3 !
[{ Welcome back . Your token is 1120958672026923566. :

;] Click here agan te continue browsing with the same dantity.

{ Click hgra to continue browsing with a new identity.

Figure 11.27: Displaying the Output of TokenServlet Serviet Using URL Rewriting

Clicking the second link allows the user to continue browsing with a new identity. Figure 11.28 shows the output
when the second link is clicked: '

] & v Page~ Safety~ Igolsw Ov ?i

i
Welcome. A pew token -46859325222639813 is now astabiished B

] Click hezg again to continue browsing with the same identity,

q Click here to continue browsing with a new identity.

Figure 11.28: Displaying the Output of Browsing the TokenServiet Serviet with a New Identity
Although, the URL rewriting mechanism can solve the problem of session tracking, it has two main limitations:
O Itis not a secure session tracking mechanism as the token or session id is visible in the URL during a session
O It can only be used with servlets or other dynamic pages as the links in static pages are hard coded and
cannot change dynamically for every user

You can use cookies as a session tracking mechanism to overcome the preceding problems of the URL rewriting
mechanism.

Session using Secure Socket Layer (SSL)

SSL is used to protect the data during transmission that covers all network services. This layer uses Transmission
Control Protocol (TCP)/Internet Protocol (IP) to support typical application tasks that require communication
between clients and servers. It is an encryption technology that runs on top of TCP/IP and below application
level protocols, such as HTTP. SSL ensures the security of data transported and routed through HTTP. SSL is
designed to utilize TCP as a communication layer protocol to provide a dependable, uninterrupted, secure, and

371



Chapter 11

authenticated connection between two points over a network. It is used mostly in an HTTP server and client
applications. Almost each available HTTP server can support an SSL session, Figure 11.29 shows SSL between
application protocols and TCP/IP:

; : 1
M HTTP H LDAP ‘i POP3 | Application Layer
, ‘ |

. L_ TCEAP

Figure 11.29: Displaying SSL between Application Protocols and TCP/P

Apart from the cookies, hidden form fields, URL rewriting, and SSL mechanisms, the session details of a user
can also be tracked by using Java Servlet APL. The HttpSession interface in Java Servlet API also helps in
implementing session tracking. Let’s discuss the HttpSession interface in the next section and learn how to
use it to implement session tracking.

Describing Session Tracking with Java Servlet API

Session tracking is a mechanism used to maintain the state of a user within the lifetime of a session. In other
words, session tracking is a means to keep track of session data, which represents the data being transferred in a
session. As the HTTP protocol is a stateless protocol, the Web container needs to manage the session data in a
Web application.

Session tracking is used when session data of a user might be required by a Web server to complete specific
operations in the current session. For example, suppose you are shopping on an online book store, You access
the online book store Web site and add items to the shopping cart. When you proceed for checkout, then due to
session tracking the server would be known that the user who added items to the shopping cart is logging out.
The following subsections briefly discuss about history of session tracking and provide a description about how
to create and track a sesston.

History of Session Tracking

Developers maintain the session state by providing user information into hidden form fields on an HTML page.
In addition, they can maintain user’s session by embedding the user activities into URLs with a long String of
appended characters. You can find good examples of embedding user activities into URLs mostly in search
engine sites, which still depend on CGl. These URLs contain the URL parameter name/value pairs that are
appended after the reserved HTTF character 7. The search engine sites use the URL parameter name/value pairs
to track the user choices. However, appending URL parameters can result in a very long URL that needs to be
carefully parsed and managed by the CGI script. The URL parameter name/value pairs cannot be passed
through URL from session to session. Once the control over the URL is lost, that is once the user leaves one of the
pages, the user information is lost forever.

Later, browser cockies were introduced by Netscape, which can be used by each server to store user related
information on the client side. However, one of the drawbacks of using cookies is that cookies are not fully
supported by some browsers and most browsers limit the amount of data that can be stored with a cookie.

To overcome the shortcomings faced while using cookies and to maintain the user session, the HTTP Servlet
specification was introduced. The HTTF Servlet specification protects the code from the complexities of tracking
sessions, Servlets may use the HttpSession object to track the input provided by the user over the span of a single
session as well as to share the session details with other servlets,

Session Creation and Tracking

An instance of a class that implements the javax.servlet.http.HttpSession interface represents each
client session in the standard Servlet APL The servlets can use the HttpSession object to set or get the
information about the session which must be of the application-level scope. A servlet can retrieve or create the
HttpSession object for the user by calling the getSession () method. The getSession () method accepts a

372



Working with Serviet Programming

boolean argument that specifies whether to create a new session object for the client if no session already exists
within the application. Let’s now learn how to create a session.

Creating a Session

A prospective session that has not yet been established is considered new. As HTTP protocol is request-response
based; therefore, the HTTP session is considered as new until it is joined by a client. The client is considered to
have joined the session when session tracking information is returned to the server indicating that the session
has been successfully established. Any next request from the client is not recognized as a part of the session until
the client joins the session. A session is considered to be new, in either of the following cases:

8  The client does not have knowledge about the session
Q@ The client opts for not joining the session
In both the cases, the servlet container could not correlate a request with the previous request by any means.

Therefore, a servlet developer must design the application in such a marnmer that it could handle a situation
where a client has not yet joined a session or will not join a session.

As explained earlier, the servlet container wuses the HTTP session objects that implement the
javax.servlet.http.HttpSession interface to track and manage the user sessions. The HttpSession
interface contains public methods, such as setattribute() and getAttribute (), to set as well as get the
session information, respectively. The following code snippet shows the syntax of the setAttribute()
method of the HttpSesmon mterface
The setAttrlbute () method binds the 5pec1fled ob]ect under the specified name, to the session. The fol}owmg
code smppet shows the syntax of the getAttribute() method of the HttpSe551on mterface

5 T R Bl : BT L
The getAttrlbute () method retrieves the object that is attached to the session w1th the speaf:ed name, A
null value is returned if there is no match. According to the configuration of a servlet as well as the serviet
container, sessions may automatically expire after the specified time or the servlet may invalidate the session
explicitly. The following methods can be used by servlets to manage the session life-cycle specified by the
HttpSession interface:

0  wvoid invalidate{} —Invalidates the session instantly and unbinds any bound objects from the session.

0 void setMaxInactiveInterval{int interval) —Sets a session timeout interval as an integer value
in seconds. Timeout cannot be indicated by a negative value. A value of 0 results in immediate timeout.

O boolean isNew(}—Returns true if a new session is created within the request that creates a new
session; otherwise, it returns false.

O 1long getCreationTime () —Returns the time of creation of the session object. The time is measured in
milliseconds and is calculated since midnight, Januzary 1, 1970.

0 long getlastAccessedTime () —Returns the time associated with the most recent request made by the
client during the session. The time is measured in milliseconds and is calculated since midnight, January 1,
1970. Session creation time is returned by the method if the client session has not yet been accessed.

Let’s create a serviet to understand the implementation of the HTTP session object. Listing 11.22 provides the

code of the MySessionServlet servlet, which creates the HetpSession object and prints the data held by the

request and session objects (you can find the MySessionServiet.java file on the CD in the
code\JavaEE\Chapterll\HandleSessicn\src\com\kogent folder):

Llsrmg 11.22: Showmg the Code of the MySessmnServlet java Fxle

373



Chapter 11

Retrieve the session obJect for the.current, u
{éﬁssm zs created‘ ‘lf a se sion ob v has:
;I previdus og :

jonobj = req. qets;-ss'ion(tme

late the wvariable that holds.

:tmes the page has bean:

th ‘ ’iiﬂ

2 praw pr“mﬂﬂ{”«:headﬁmig%b
c;zrmm Ser Session’ k. 'g/ti

¢ pEIMCIERr Bri T O <h]




Working with Serviet Programming

;. e -. ]
pr’nwr"iter winﬁn(se%umhj gn d()), B

.. prowriter . printla(’<
pﬁwﬁte el

o --pmriter}gggg 1»5 3; 1
e q;‘;ﬂzmﬂn(‘kw WIB;%\"&Q%\" ”B;; '
: prmtef pﬂni}!}g!‘}eﬁ Date(sessxmab:l gg;@eanmme(})),

pr er.printing”
prawriter. grinﬂn{"m-zm wmm::\";ﬁ%\" ALIGN—LEF!" SO
e iLar tin(Time.
- ;pmyr printin QY at
nwriter print gg"dm:v Vi
Murite %ﬁtg i g

Save MySessionServlet in the src\com\kogent directory of the HandleSession Web application. Now,
configure and map the MySessionServiet serviet to the /MySessionServlet url pattern in the web. xml
file and then create HandleSession.war. Redeploy the EandleSession Web application on the Glassfish
server and browse the URL http://localhost:8080/HandleSession/MySessionServlet to see the
output of the MySessionServlet servlet.

Figure 11.30 shows the output of the MySessionServlet servlet, displaying the results of the accessor methods
on the request and session objects as well as listing request and session data:

¢
L i Fectrits © s @ Sespesed e Wk Shoa Gallay

W Dhpiaing e e o it S &L bgev sty e Fao = 0~

Displaying the Details of Current User Session

Yonu kive visited this pagel 1imes.

s Requesied Seion D Vald

i -m o Svssiow Datn _
[z 2 New Sevsion fcor:
] fadd 1 e85 S RSP e d
e T e A 201636 5 15T 2018
[Thwe st Season woe Lt AcsessectfTuc Ape 20 1626 3£ IST 2010

Chek hipe o refoad e serdct and ser scssion tracking in st

oo 7l ol it | P bl O G v

Figure 11.30: Displaying the Output of MySessionServiet Serviet

375



Chapter 11

In Figure 11.30, if a user clicks the here link and the cookies are enabied in the browser settings, then the request
and session data get changed. In such a case, change the Web browser settings, for example, disable cookies and
click the here link that causes URL rewriting.

Tracking a Session Using Serviet API

The Servlet API provides various metheds and classes, such as getSession() and HttpSession that are
particularly designed to handle session tracking.

The session tracking AP, which is the part of the Servlet API and provides session tracking functionality, can be
used in any Web server that supports servlets. However, the level of support depends on the server.

For example, session objects can be written to Java Web Server even if the server disk memory fills up or the
server shuts down. However, to take advantage of this option; the items that are placed in the session are
required to implement the Serializable interface.

Exploring Session Tracking Basics
In session tracking, the user identity is linked with the javax.servliet.http.HttpSession object that can
be used by the servlets to store or retrieve information about that user, Any set of arbitrary Java objects can be
saved in a session object. For example, to store the user’s shopping cart content in a database, a user’s current
HttpSession instance is retrieved by using the getSession() method of the HttpServletRequest interface,
as shown in the followmg code snippet:

CpebREe e on:HrEgSEcV TetRequest gersessTon(bosTean create): CRROREI
The current session that is associated with the user who makes the request, is returned by the getSessmn()
method. If the create Boolean variable has a value true, the getSession() method creates the session;
otherwise, the method returns null. The getSession() method must be called at least once before writing any
output to the response to ensure that the session is maintained properly.

Let’s create another servlet, MySessionTrackerServiet, to have a better understanding of the concept of
session tracking. The MySessionTrackerServlet servlet fetches and prints all the attributes associated with
the current user session along with a count for the number of times the servlet has been visited by the user
during the session. Listing 11.23 shows the code of the MySessionTrackerServlet. java file (you can find
this file on the CD in the code\JavaEE\Chapterll\HandleSession\src\com\kogent folder):

Llstmg 11.23: Showing the Code of the MySess1onTrackerServ1et java File

kage: com’ kogent

JaRE M g LORETs b
S mport 3m.um * '
. public Class Wssim&mﬂ_, - extentts memet A4
- public-void doGet (HtipServietRequest req; :

throws: servierExceéption, xo:axceptien i : v
// Retrieve. the session object For the tirrent user ﬂssmn
= 1/ A new session is created if a session: a&i«eﬂ ‘bas not been >
Ll = ff created previcus)y.
Leh et psessTon 58%9510110{] = e, gewassimétw, —

SR pﬁ Create and update the variable that holds a count.
"1/ the nusber of times the page has bean vis’

: cat’mg s
Sted duritg ‘the eurrent

méeger:émmt L% {Intéger} sess1
SAF (colmt == 1) o -

sessmhobj'setAttrib te by
H Add’ some m@e , "

376



Working with Serviet Programming

"Red” )

/h
_pmwr ter = res. gemnter‘{). e
: pmr'q !:er a m1n(”<HmL><HW<TI? Eany Sessm Tm‘; Wi
Servlekitx'm&} }HE:?:— s iy

The MySessionTrackerServlet servlet tracks the number of Himes the client accesses it. When the client
accesses the MySessionTrackerServlet serviet for the first time, the new session is created and each time the
client accesses it, the value of count variable is incremented by one and the browser displays the number of
times the client has accessed the serviet. The other variables related to the current client session are also
displayed by the servlet.

Save the MySessionTrackerServlet servlet in the src\com\kogent directory of the HandleSession Web
application. Configure the MySessicnTrackerServlet servlet in the web.xml file. Then, compile the
MySessionTrackerServlet servlet, package the HandleSession application, and redeploy the Web
application on the Glassfish server. Browse the
http://localhost:8080/HandleSession/MySessionTrackerServlet URL to view the output, as
shown in Figure 11.31:

8 e, ooy st oot 3] 3Ty % B sy -

S —— ;;Q'i-dﬁ-v.h ey > :
| G S Vi s T (B g W e e Tene 7]

Demonstrating Session Tracking

You hane voited thes page § tie

Displaying Session Data
T seName [Palrvi
(gl 3 4066 L 06b208AR T e 775 S o8]
fi FenanzijeColor Red
(Count 1
L U e o iy

Figure 11.31: Displaying the Output of the MySessionTrackerServiet Serviet

The MySessionTrackerServlet servlet first retrieves the HttpSession object linked with the current client
session. The getSession () method, with a Boolean value of true as an argument, creates a session if it does
not exist for the user. The servlet then fetches and sets the value of the Integer object count, which is bound to
the current user session with a name Count . The servlet initializes the Count variable, if it is previously nul1.
Otherwise, the servlet increments the value of the Count variable by one and resets it for the user session. The

377




Chapter 11

servlet also fetches the values of other variables associated with the current user session. Finally, the servlet
displays the value for the count variable and all the name/ value pairs for the variables associated with the
current user session.

Demonstrating Session Life-Cydle with Cookies
Let’s now explore the lifecycle of HttpSession objects, by creating a servlet, TrackSessionLifeCycle. The
serviet examines certain session attributes and provides link to invalidate the existing session. We will also
examine the behavior of the servlet in the absence of cookies, and then discuss the ways to generate Web pages
that work as desired, irrespective of whether cookies are accepted by the client browser or not.

The TrackSessionLifeCycle serviet generates a page that displays session object data including session 1D,
creation time of the session object, last accessed time, and max inactive interval for the session. The
TracksessionLifeCycle servlet also provides links to reload the page and invalidate the current user session.
Listing 11.24 shows the code of the TrackSessionLifeCycle. java file {you can find this file on the CD in the
codehJavaEE\Chapterll\HandleSession\src\com\kogent folder):

Listing 11.24: Displaying the Code of the TrackSessionLifeCycle Class

Lprowriter, ALTGN=CENTER :Border=\"1\"
bordercolar=\"glua\">");. AT B .

o prowriter.printIn( " <IR><TD WIDTH=\"SO%\" ALIGN=LEFT><I>");
:pc:%ﬁggr.-pr?nt%ng“segion_Staifg'x;s*“);"’ pmty
U prairi ter, printIng </ Is < /7B Erns
if (sessionobj .Visﬂéﬁréﬁh;fi_; o

S prawriter . peintInC New Session

(" /TDr</

(session by
%/ 1 )



Workirg with Serviet Programming

tin ﬁlbﬁ«ﬂ‘ﬂ m\f’m M‘IMEM"
1 rintlo(Last . Accessed: Times™);
e 7 inﬂn{"z/i&zfmm“)v : sl

"'prm*ﬁtempri&ﬂn{m e
-Wﬂg&m?omJiQ?ﬂAStac§essg§&“m())). e, e

*wmﬁé&r priatin 'mx
: ‘ésecmﬂs);

9 mﬂn("«bmbrwcenterm hmf =\~<"~+ url +
-;"?mquq tion=invalidate\"s")3 i :
prwriter.printin("Invalidate the sesﬁomf»“}
'pmwrwteg pf‘int'ln( i:bra»xcenter:xa href \"" + ur'l

. "'\"5"5 ; -

3 A
pﬁ%‘lﬁ’eﬁ prinﬁnf“‘«*fﬁad}?ﬁ“«f}’ﬁtm:»"}*
; -%W«nwn;«er .closel)

Save the code of Listing 11. 24 as the TrackSessionLifeCycle. java file in the src\com\kogent directory of
the HandleSession application. Configure the TrackSessionLifeCycle servlet in the web.xml file and
map it to the /TrackSessionLifeCycle url pattern. After configuring, compile the
TrackSessionLifeCycle servlet, package the application into HandleSession.war, and redeploy the
HandleSession application. To run the servlet, browse
http://localhost:8080/HandleSession/TrackSessionLifeCycle.

Figure 11.32 displays the output of TrackSessionLifeCycle showing the new session, since the user is
accessing this page for the first time:

gy brees s @ Sugyeted e v g Weh She Gaery T
‘qummm;kum\liscy:le - R I R A AT Lo L

Tracking Session Life Cycle

e Sonnion
&6"291’611!3319011.‘&1&!1’3:5:
JiWed Apr 22 133023 18T 2m0
Jed Ape 33 1020 24 15T 2000

@ Frram 3 aevonds §1BGY

I 2fcdanc e sssive
Reitad dui page

!‘tlmammumcaemdmmm : a g0 - .

Figure 11.32: Dlsplaymg the Output of TrackSessionLifeCycle Serviet
The else block provided in Listing 11.24 is executed when the servlet is invoked without any parameters and
performs the following steps:
Q  Calls the isNew () method to check for the status of the session that whether it is new or old.
0 Calls the getSession() method onthe HttpSession object with the true Boolean value passed as
an argument.
Q Calls the getId () method to get the session ID.

379



Chapter 11

O Calls the getCreationTime{) method to get the creation time of the session. When this method returns
the creation time as milliseconds since January 1, 1970 00:00:00 GMT, the returned value needs to be
converted into a Date object by using the new constructor.

a Callsthe getLastAccessedTime () method to get the time the session was last accessed.

D Calls the getMaxInactiveInterval {) method to get the current max-inactive setting.

After printing the details, such as sessionID, creation time of the session, last accessed time of the session, the
servlet generates two links, one to invalidate the session and the other to reload the page. The first link has query
string as requestAction=invalidate that is appended to the URL. When you click the Invalidate the
session link, the if block of the doGet () method is executed. However, the second link simply points to the
same page. Ensure that cookies are enabled in your browser configuration so that cookies can be stored on your
system. Figure 11.33 displays the browser’s output, when the Invalidate the session link is clicked:

A D S oo i A

Your sessaon bas betu mvaidnted.

Would vou liee to creae. & pew session

Figure 11.33; Dispiaying a Message Depicting the Expiration of a Session

Now, when you click the create a new session link, a new session is created, as shown in Figure 11,34

i frott - 3, Sepptad Shes = Wah Glkca ey

e A Ao A

Tracking Session Life Cycle

D
1910187 2010

liralidae e jrasien
Petiond iz page

o - . e w TR

Figure 11.34; Creating a new session

Now, let’s see what happens if the code in the el1se block is executed again. Click the Relvad this page link.
You find that the session status displays that the session is old. Figure 11.35 displays the output when the

Relcoad this page link is clicked:

380

iR Foite  Gp . Sipted Sees v Walk Slr Gallury +

T BB e s e e @

Tracking Session Life Cycle

[Sssian Stars |0 Sevsion
beccion 1D ikmiﬁ?;mumwm
Craation Tima, ®ad ap 21 14310 18T 2010 _
i [ar iccarred Fome Wed Apr 21 131410 18T 2050
i {Marmum fractve Iuuers o tsocondss JLEON
]

brvaidae he 3etsivn
Relead this paer

"W, Locatinone | Praectad hhode ON PRI T

Figure 11.35: Reloading the Old Session



Working with Serviet Programming

You may notice in Figure 11.35 that the session ID and the session creation time are same as they were before
reloading the page, as shown in Figure 11.34. Therefore, every time you click the Reload this page link, only
the last accessed time changes and not the session ID and the session creation time.

This illustrates how simple it is to create and keep track of sessions. Now, let’s see what happens if you click the
Invalidate the session link. As this URL has a query parameter action=invalidate, the if block of
the doGet () method will be executed to invalidate the created session.

Now, click the Create new session link. The resulting page should be similar to Figure 11.34. Examine the
if block of the code of Listing 11.24. This part of the TrackSessionLifeCycle servlet gets the session from
the request, calls the invalidate () method, and generates a new link back to the previous page.

Now let’s create a login application using Session Tracking APL In this application, a user logs on with the
username and password and after logging into the application, the user browses the session details. Finally, the
user logs out and the session is terminated.

Working with Login Application using Session Tracking

Let’s create the login Web application, in which the user logs on with the username and password, and then
creates a session. Till the session is active, the user can browse the session details; however, once the user logs
out, the session becomes invalid.

Let’s name the Web application as LoginApp to demonstrate session tracking. This application has an HTML
page and two servlets. These will be configured in the web.xml file. You should know the directory structure of
the application before creating the application. Therefore, let’s first discuss the directory structure of the
LoginApp application. The directory structure of the LoginApp Web application would make it easy to
understand where to save the Java, HTMI., and configuration files.

Exploring the Directory Structure of Login Application

The servlets, HTML pages, and the Cascading Style Sheet (CSS) files of the LoginApp application are
stored under a base directory of the application. Create a folder for your application say, LoginApp, in the C:
\JavaEE\Chapterll folder. Create some more folders, such as WEB-INF, WEB-INF\classes, WEB-
INF\1ib, and src (Figure 11.36). Store different types of files at the proper location in the directory structure,
as described in the following statements:

O All packages containing class files are stored in the WEB-INF\ classes folder.
Q@ The configuration file, such as web.xml, is stored in the WEB-INF folder.

O Al source files {java files) can be stored in the src\com\kogent folder. This folder is optional in your
application and you can store your source files at any other location.

Figure 11.36 displays the directory structure of the LoginApp application:
B L) Lognigo
8 s
= R e -
B‘{B ngent
L@ LognServietjava
: P WekomeSendetjava
D B deses
S G2 com
€ € kogent
o lopnServet.cdass
Y welcomeServiet.dass

me o
L webom
& ndex.hm

Figure 11.36: Displaying the Root Directory Structure for LoginApp Web application

381



Chapter 11

As shown in Figure 11.36, LoginApp is the root folder containing the WEB-INF folder, src folder, and
index.html file. The WEB-INF folder has two folders, classes and 1ib, and a file web.xm1. As discussed
earlier, the package containing LoginServlet and WelcomeServlet class files is stored at the WEB-
INF\classes location under the Loginapp directory. The src\com\kogent is the optional folder containing
source files (LoginServlet . java and welcomeServiet . java). The configuration file, web.xm1, is stored
in the WEB-INF folder.

Building the Front-End

The HTML page acts as a front-end of the LoginApp Web application. The index.html page displays a login
page for the users. On the basis of the user details entered in index.html, a session is maintained. The user details
include the username and password. Listing 11.25 shows the code of the index.html file {you can find
this file on the CD in the codeNJavaEE\Chapterll\LoginApp folder):
Listing 11.25: Showing the Code of the Front-End
" <DOCTYPE HTML:_PUBLIC- ;! >
<HTME 0

<TD VALTGNSTOR ALEG _
NPaSsmrd:dB;. ERES

! '. < (IR
<TD VAL TGNSTOP

| <B><INPHT NAME="passwird” TYPE="Password’ Ma
«‘:m” il Tl ':. I S .

| CTR><TD VALIGNSCENTER> -1

<B><INPUT VALUE = "Log In" TYPE= "SUBMIT"s</B> D
AR N
CU<fTABLES L

CLURSFORMY
</BODY> :
- #m"'} i : . : sy et La : :

Save the code of Listing 11.25 as the index.html file in the base LoginApp directory and link the mystyle

CSS stylesheet to index.htmi. The style that you want to apply to your HTML page can be stored in the

mystyle.css file, which is saved in the base LoginApp directory. The code of mystyle.css is provided on the CD.

After entering the login details, the LoginServiet serviet is requested.

Creating and Managing a Session

In the Loginapp Web application, two servlets are created, LoginServlet and WelcomeServlet. The
LoginServlet servlet creates a new session for each user and retrieves the data from index.html. Based on the
username and password entered by the user in index.html, the LoginServlet servlet sets two new attributes,
username and password, in the session. Listing 11.26 provides the code of the LoginServletjava file (you can
find this file on the CD in the code\JavaEE \Chapterll\LoginApp\srci\comi\kogent folder):

382



Working with Serviet Programming

Listing 11 26 Settmg the Values of the username and password Attnbutes

J] ye«.ﬂﬂ:-“) :

prirtﬂnf“q&]:&essm_ 1
tfhtmilk";-amﬁage“ + <fa> ( retum t& "fagm

hrafﬂ\*‘in&”

session:setartribute(Tusername”, username); - - o0 sihy

Pl _session.serAttribute  password”, password)s . il

© L respanse. setcwtentfype("text/htﬂ"}, SR B

~1>;witer.priatlu("wchmb<kody ny‘}&i\‘fm-- VATEE e

- familyzverdana; fong-size: 10pt\"» ”}. :

. writer.printin(i<hlxiogin Appli
‘fwr‘tter pr’im:hr( sTh

"l<p> YoUu ArE. now ‘Ia i
nse. encodeﬁRL(”weIzwe%v’fat"}
ke for annther:

The LoginServiet servlet checks whether the session is new or not. If the session is not new, the user is prompted
to go to the home page as a session already exists. However, if the session is new, the HIML page is designed,
which provides a link to the user to browse and the request is forwarded to WelcomeServlet. The
WelcomeServlet servlet displays the session details of the logged in user. Listing 11.27 provides the code
of WelcomeServlet (you can find this file on the CD in the
code\JavaEE\ChapterlliLoginApp\sreci\comikogent folder):

Listing 11.27: Showing the Code of the WelcnrneServ]et Servlet

package com.kegent; - .-
impart javax sm’%et !'}ttp

" import iava.fo.*
import java,ntil_*;-
publw class: micwew¥et éxl:emis Httpsmle:: £
wiﬂit void. dmé ServigtRequest : request ﬂt[t)psewletlesma msmss) &»« *

383



b

Chapter 11

‘Epumeration names. = session.gerAttributeNames(); " <.
while (names.hasMores ts() { sl

il

object value =5

. Wifgr;pri ating"
: S

L

When the request is forwarded to the WelcomeServlet servlet, the servlet retrieves the session and checks
whether the session is new or not. If the session is new, the logout message is displayed to the user. However, if
the same session continues, the session details of the logged in user are displayed on the browser,

“The getattribute(} method is used to retrieve the values of username and password attributes. The
getAttributeNames () method is used to retrieve the values of the attributes that are set during the user

session. In the following code snippet, the while loop is used to retrieve the attribute name and its value, which
is displayed on the browser:

After displaying the session details, the session is explicitly terminated ﬁsmg the invalidate() ‘method. The
user can end up the session by clicking the logout link.

The LoginApp Web application created a session for .the user who had logged in with the username and
password. After logging into the application, the user browses to get the session details, During the session,
username and password have been set as the attributes in the user session, and the values of these attributes are
retrieved by the WelcomeServlet servlet and are displayed on the browser.

Now, compile the two servlets from the src\com\kogent directory by using the following cornmand:
o orjavac #eer\JavaEE\Chapterl1\Logi nADPAWER-INF\Cldsses . . Java: BT s e
The execution of the preceding command creates the package directory under the WEB-INF\classes folder.

Prior to packaging, deploying, and running the LoginApp Web application, these servlets need to be configured
in web.xml.

Configuring the Login Application

To configure the LoginApp application, the configuration file used is web,xm1, which maps the URL path,
forwarded by index.html to the LoginServlet servlet and also defines the url pattern for the
WelcomeServlet servlet. Listing 11.28 shows the code of the web . san1 file (you can find this file on the CD
in the code\Java EE\Chapterll\LoginApp\WEB-INF folder):

Listing 11.28: Configuring the Servlets and HTML Page of the LoginApp Application

384



Working with Serviet Programming

et</servict-naes RS
ere/urt- pa tern:- N e

v‘ie‘tdserv'letmm:» ce

<sew’let~name>ﬂe]cm i
. <serviaa:»mass>mm kogent ueTcomSer'vTe’c</servlet-class>
</servigts - L
«serviet-mapping>

<serv¥atanam>ﬁekfm5erﬂ et</ serviet-names
<url-pattern-/welcomese w‘l et</u ri- pattern>
</serviet-mappi ng» . Dot %
.<session-configy .
. <session=tindout=30
el sessionscanfigs
Vi awe] gwﬁm—lim

mi</welcome-files

In Listing 11.28, web.xml conflgures the LoglnServlet and WelcomeServlet servlets and also prov1des the
url pattern for these servlets, The full package structure has been provided for each servlet class, as shown in
Figure 11.36. Moreover, the session timeout has also been set to 30 minutes and the welcome file which will be
displayed when the Loginapp Web application runs, is index . html.

Now, before running the Loginapp Web application, it is packaged in the WAR file (LoginApp .war) by using
the following command:

Cfar <ovE Loginsppaeari. : : ’ ) '
The preceding command creates the LoglnApp war flle contammg all the files of the LoglnApp dlrectory

Running the Login Application

After packaging the LoginApp Web application, start the Glassfish server and deploy Loginapp.war. Now,
browse http://lecalhost:8080/LoginApp to see the output of the LoginApp application. Figure 11.37
displays the output of index.htmi, which serve as the Login page:

:w..mn:,;gs-,-msnu ¥ Vieh Hica Gaery =
aawmm c ‘-’& Lo - g s Taske &

Logm Application using Session Tr acking

E User kD: Paas
Przsmord - arenes
1

uw; e ..“ m‘m‘w' SR L e -

Figure 11.37: Dlsptaylng the Qutput of index.html
In Figure 11.37, enter the User 1D and Password and click the Log In button. In our case, we have entered Pallavi
in the User ID text box and pallavi as password in the Password text box. Then, click the Log In button to
forward the request to the LoginServiet servlet. The LoginServlet servlet creates a new session for the
pallavi user and displays a welcome message, as shown in Figure 11.38;

_.my'.b(mw;wh;w U8 e - e Geme g -

Login Application using Session Tracking

3 aen e gl b a e Shne et

o et st B b i G- e -

Figure 11.38: Displaying the Output of the LoginServiet Serviet

385



Chapter 11

The LoginServlet serviet creates a session for the logged in user. To view the session details and value of the
attributes set in the session, the user can click the here link shown in Figure 11.38. After clicking the link, the
request is sent to WelcomeServlet and the session details are displayed, as shown in Figure 11.39:

~ e be e P it e

Figure 11.39: Displaying the Output of the WelcomeServiet Serviet

By clicking the Logout link, shown in Figure 11.39, the user can explicitly end the session and return to
index.html. Therefore, the LoginApp application maintains a session for the user who logs in with the username
and password. Based on the username and password, the username and password attributes are set in the
session and till the user is in the same session, the session details can be viewed. After logging out, the session is
explicitly terminated and the user is no longer in the session and a new session is created for the new user. This
ends up the discussion about session tracking. With this, we come to the end of the chapter. Let's now recap the
main points of the chapter in a short summary.

Summary

This chapter has discussed the Java Servlet API, version 2.5. It has first explored the features of Servlet 2.5 after
which the general features of a Java Servlet have been discussed. The chapter has then explained the classes and
packages of the Servlet API that are used to develop Web applications. You have also learned about the life cycle
of a servlet and configuring a servlet in the web.xml file. Apart from this, you have learned to create a sample
servlet by mapping it in the web.xml file. The chapter has also listed the noteworthy interfaces of the Servlet 2.5
APL You have also learned about request delegatior, request scope and servlet collaboration. At the end of the
chapter, you have learned about session tracking; the Java Servlet API used for implementing session tracking;
and also learned about how to implement session tracking by creating the Login application.

Quick Revise

Ql.  The two arguments passed to the forwaxrd () method of the RequestDispatcher class are objects of
the .oooviinnnee. vreerneensea. Classes,

A) HttpServletRequest and HttpServletResponse
B) HttpServletResponse and PrintWriter
C) ServletContext and ServletConfig
D} HttpServletRequest and ServietContext
Ans:  The correct option is A.

Q2. To get an object of the PrintWriter class, we use the getWriter() method of the
versevarareses sanans sonens C1ASB.

A) HtipServieiRequest B) HttpServietResponse
C) SessionContext D) HttpSession

Ans:  The correct option is B.

Q3.  Alife cycle method of a servletis ... ccveivnrcvvevvnvae e
A) init() B) service()
C) destroy(} D) Above All

Ans:  The correct option is D.

Q4. We can get an object of the Requestbispatcher class by using the getRequestDispatcher ()
method onthe .......cocooveiiv v e class,

A) ServletRequest B) ServletContext

arase o

386



Working with Serviet Programming

C) BothAand B D} None
Ans:  The correct option is C.
Q5. Initialization parameters can be fetched by using the .............o..ceoeeo.............. method.
A) getAttribute() B} getParameter()
() getInitParameter() D) getServletContext()
Ans:  The correct option is C.
Q6. The number of ServletContext objects present for an application is .........coovvcvrvvicivrvveen e
Ay 2 B) 1
C) Not fixed D) Each for a Servlet

Ans:  The correct option is B.
Q7. HttpServlet extends .......ceeeviviniiiraneininn o
A) The javax.servlet.GenericServlet class
B} The javax.serviet.http.GenericServlet class
C} The javax.serviet.http.HitpServietRequest interface
D) The javax.servlet.ServletlnputStream class
Ans:  The correct option is A.

Q8. The method used to fetch the value of an object in the request SCOPE IS woivierraiiran e st e v e
A} getAttribute() B) getParameter()
C) getInitParameter() D) None

Ans:  The correct option is A.
Q9 If cookies are disabled on client-side, the alternate session mechanism that can be used is

A) Either Cookies or URL rewriting B) URL rewriting

C) Cookies and URL rewriting D) None
Ans: B
Q10. The interface that defines the getSession () Method is .o eeeeeoseeesoeos oo s
A) HttpServletRequest B) ServletRequest
C} ServletResponse D) HttpServletResponse
Ans: A
Q11. The...........ceunieven... method of Bt tpServietRequest returns null if a session does not exist.
A)  getSession() B} getSession{true)
C) getSession(false) D) getNewSession()
Ans:
Q12.  The ........cssee e cerrunveenn .. method on the session object is used to remove a set attribute.
A) removeAllValues() B) removeAttribute{“attributeName™)
C) removeAttributes() D}  removeAllAttributes()
Ans: B

Q13. Which statement is false:
A)  URL rewriting can be used to track a session
B) S5L has a built in mechanism to obtain the data to define a sessfon
C) The name of session tracking cookies must be JSESSIONID
D)  There is no restriction for name of the cookie tracking the session
Ans: D
Q14. What is a servlet?

387



Chapter 11

Ans:

Q15.

Q16.

Ans:

Q17.
Ans:

Q18.
Ans:

Q19.
Ans:

Q20.
Ans:

Q2.
Ans:

Q22,
Ans:

Q23.
Ans:

388

A servlet is a simple Java class working on the request-response model. Various interfaces and classes to
handle common HTTP-specific services are defined in the Java Servlet APIL Each servlet implements the
Servlet interface by providing implementation of the life cycle methods, init(), service(), and destroy().
Differentiate between the ServietContext and ServletConfig objects.

A ServletContext object is used to communicate with a Servlet container while ServletConfig,
which is a Servlet configuration object, is passed to the servlet by a container when the servlet is
initialized. A ServletContext object is contained within a ServletConfig object. '
What is the difference between the getRequestDispatchex () methods of the ServlietRequest
and ServletContext interfaceas?

Both getRecuestDispatcher () methods take a String parameter, which is a path to the location
where a user's request would be forwarded. The getReguestDispatcher () method of the
ServletRequest interface can accept both types of paths, i.e. the relative path from the requesting servlet
and the path relative to the context root. However, the getRequestDispatcher () method of the
ServletContext interface cannot accept the relative path.

Define the init () method of a servlet.

The init () method of the HttpServlet class is called before a servlet handles the first request and is
used to initialize the servlet, This init () method also saves the ServletConfig object by using the
super.init () method and stores the initialization details of a servlet. This method is called once only.
How is the GET method different from the Post method?

In the case of the GET method, all data submitted with an HTML form is attached with a URL. This
method is faster and easier to use than the POST method but not as secure, and the upper limit of the
URL length limits the amount of data transferred. The Post method, on the other hand, puts name/value
combinations inside the HTTP request body and is therefore more secure. In addition, there is no limit
for the amount of data that can be sent in this method.

What is a session?

A session can be defined as a collection of HTTP requests, over a period of time, between a client and a
Web server. When a session is created the lifetime of the session is also set. The session object is
destroyed on the expiration of session and all the resources are returned back to the servlet engine.

List the session tracking techniques.

There are basically the following four session tracking techniques:

» Cookies

* Hidden Form Fields

+ URL Rewriting

+ Secure Socket Layer (SSL) sessions

How cookies are used to track a session?

Using cookies is the simplest and easiest way to track a session. A unique session id (stored in the form
of a cookie) is sent by the server to the client as a part of the response and the same session id saved with
the client is sent to the server as a part of the request which helps the server to recognize the unique
client session. '

List the methods of the HttpSession interface which help a servlet to manage session life-cycle.
The HttpSession interface provides the following methods to manage session life-cycle:
Invalidate()

setMaxInactivelnterval(int interval)

isNew()

e getCreationTime()

s getLastAccessedTime()

Cookie is a class of the ... package.

javax.servlet.http



